Уравнения математической физики. Уравнение теплопроводности. Хуснутдинов Н.Р. - 7 стр.

UptoLike

Составители: 

v(x, t) =
X
n=1
φ
n
(x)T
n
(t)
T
n
(t) φ
n
(t) = cos λ
n
x + c
0
n
sin λ
n
x
V (x, t)
V (x, t) =
X
n=1
φ
n
(x)γ
n
(t),
γ
n
(t) =
1
Φ
n
Z
l
0
φ
n
(x)V (x, t)dx.
T
n
(t)
˙
T
n
(t) + a
2
λ
2
n
T
n
(t) = γ
n
(t).
v(x, 0) =
X
n=1
φ
n
(x)T
n
(0) = F (x),
T
n
(0) =
1
Φ
n
Z
l
0
φ
n
(x)F (x)dx.
Ce
λ
2
n
a
2
t
.
C
C(t)
˙
C(t) = e
λ
2
n
a
2
t
γ
n
(t),
C(t) = C +
Z
t
0
e
λ
2
n
a
2
τ
γ
n
(τ).
T
n
(t) = e
λ
2
n
a
2
t
(C +
Z
t
0
e
λ
2
n
a
2
τ
γ
n
(τ)).
C t = 0
T
n
(0) = C.
T
n
(t) = e
λ
2
n
a
2
t
T
n
(0) +
Z
t
0
e
λ
2
n
a
2
(tτ )
γ
n
(τ),
T
n
(0) =
1
Φ
n
Z
l
0
φ
n
(x)F (x)dx.
T
l
T
0
T
i
U(x, t) = U
u(x, t) = T
0
+ (T
l
T
0
)
x
l
+
X
n=1
T
n
(t)φ
n
(t),
â ñëåäóþùåì âèäå:                                                            îòêóäà                               Z       t
                                                                                                                                   2   2
                                   ∞
                                   X                                                               C(t) = C +                 eλn a τ γn (τ )dτ.
                       v(x, t) =                φn (x)Tn (t)           (8)                                            0
                                   n=1                                       Òàêèì îáðàçîì, îáùåå ðåøåíèå èìååò ñëåäóþùèé âèä
ñ íåèçâåñòíîé óíêöèåé Tn (t). Çäåñü φn (t) = cos λn x + sin λn x.
                                                                 c0n                                                Z t
Ïðè÷èíà ïîèñêà ðåøåíèÿ â òàêîé îðìå â òîì, ÷òî ðåøåíèå íåîäíî-                                      −λ2n a2 t            2 2
                                                                                          Tn (t) = e           (C +     eλn a τ γn (τ )dτ ).
ðîäíîãî óðàâíåíèÿ äîëæíî óäîâëåòâîðÿòü òåì æå ãðàíè÷íûì óñëî-                                                                      0

âèÿì.                                                                        Äëÿ îïðåäåëåíèÿ C ïîëîæèì t = 0, ïîëó÷èì:
   Ïðåäñòàâèì óíêöèþ V (x, t) â âèäå ðàçëîæåíèÿ ïî òåì æå óíê-
öèÿì                                                                                                          Tn (0) = C.
                               ∞
                               X
                    V (x, t) =    φn (x)γn (t),                              Òàêèì îáðàçîì, ìû ïîëó÷èëè îáùåå ðåøåíèå ïîñòàâëåííîé çàäà÷è:
                                   n=1
ãäå                                                                                                2 2
                                                                                                                  Z t
                                                                                                                         2 2
                              1         l                                              Tn (t) = e−λn a t Tn (0) +     e−λn a (t−τ ) γn (τ )dτ, (10)
                                   Z
                    γn (t) =                φn (x)V (x, t)dx.                                                                     0
                             Φn     0
                                                                             ãäå
   Ïîäñòàâëÿÿ ðåøåíèå â îðìå (8) â íåîäíîðîäíîå óðàâíåíèå ïî-                                                                l
                                                                                                              1
                                                                                                                  Z
ëó÷àåì óðàâíåíèå äëÿ îïðåäåëåíèÿ Tn (t):                                                            Tn (0) =                      φn (x)F (x)dx.
                                                                                                             Φn       0
                      Ṫn (t) + a2 λ2n Tn (t) = γn (t).                (9)   Ïåðâîå ñëàãàåìîå â (10) ïðåäñòàâëÿåò ñîáîé ðåøåíèå îäíîðîäíîé çà-
Äëÿ ðåøåíèÿ ýòîãî óðàâíåíèÿ íåîáõîäèìî çíàòü íà÷àëüíûå äàííûå.               äà÷è, â îòñóòñòâèè âíåøíèõ èñòî÷íèêîâ. Âòîðîå ñëàãàåìîå ïðåäñòàâ-
 íà÷àëüíûé ìîìåíò âðåìåíè                                                   ëÿåò ñîáîé ÷àñòíîå ðåøåíèå íåîäíîðîäíîé çàäà÷è. àññìîòðèì ïðè-
                                                                             ìåð.
                             ∞
                             X                                                  Ïðèìåð 4. Íà ïðàâîì êîíöå ñòåðæíÿ ïîääåðæèâàåòñÿ ïîñòîÿí-
                 v(x, 0) =         φn (x)Tn (0) = F (x),
                                                                             íàÿ òåìïåðàòóðà, ðàâíàÿ òåìïåðàòóðå îêðóæàþùåé ñðåäû Tl ; íà ëå-
                             n=1
                                                                             âîì êîíöå ïîääåðæèâàåòñÿ ïîñòîÿííàÿ òåìïåðàòóðà, ðàâíàÿ òåìïå-
îòêóäà                                                                       ðàòóðå îêðóæàþùåé ñðåäû T0 . Ïåðâîíà÷àëüíî ñòåðæåíü áûë ðàâíî-
                                            l
                              1
                                   Z
                    Tn (0) =                    φn (x)F (x)dx.               ìåðíî íàãðåò ïî âñåé äëèíå ñ òåìïåðàòóðîé Ti . Â ïîñëåäóþùåå âðåìÿ
                             Φn         0                                    ñòåðæåíü ðàâíîìåðíî íàãðåâàåòñÿ ïî âñåé äëèíå: U (x, t) = U .
   åøàåì óðàâíåíèå (9) ìåòîäîì âàðèàöèè ïîñòîÿííîé. åøåíèå                    Ïîäîáíàÿ çàäà÷à, áåç èñòî÷íèêîâ òåïëà, áûëà ðåøåíà â ïðåäûäó-
îäíîðîäíîãî óðàâíåíèÿ èìååò ñëåäóþùèé âèä:                                   ùåì ðàçäåëå, ïóíêò 3. Èñïîëüçóÿ ýòî ðåøåíèå ïðåäñòàâèì èñêîìîå
                                            2    2
                                                                             ðåøåíèå â ñëåäóþùåì âèäå:
                                Ce−λn a t .
                                                                                                                                           ∞
                                                                                                                                   x X
Ñ÷èòàÿ ïîñòîÿííóþ C óíêöèåé âðåìåíè ïîëó÷àåì óðàâíåíèå äëÿ                                 u(x, t) = T0 + (Tl − T0 )               +    Tn (t)φn (t),
                                                                                                                                   l n=1
âû÷èñëåíèÿ C(t):
                               2 2
                     Ċ(t) = eλn a t γn (t),

                                   13                                                                          14