Математика. Жулева Л.Д - 32 стр.

UptoLike

Рубрика: 

32 2. ëÏÎÔÒÏÌØÎÁÑ ÒÁÂÏÔÁ ½5
åÓÌÉ ÎÅÚÁ×ÉÓÉÍÙÅ ÉÓÐÙÔÁÎÉÑ ÐÒÏ×ÏÄÑÔÓÑ ÄÏ ÐÅÒ×ÏÇÏ ÐÏÑ×ÌÅÎÉÑ ÓÏÂÙÔÉÑ
A, ËÁË × ÐÒÅÄÙÄÕÝÅÍ ÓÌÕÞÁÅ, ÎÏ ÐÒÏ×ÏÄÉÔÓÑ ÎÅ ÂÏÌÅÅ n ÏÐÙÔÏ×, ÔÏ ÚÁËÏÎ
ÒÁÓÐÒÅÄÅÌÅÎÉÑ ÂÕÄÅÔ ÔÁËÉÍ:
X = m 1 2 3 . . . n
P p qp q
2
p . . . q
n1
p + q
n
åÇÏ ÍÏÖÎÏ ÎÁÚ×ÁÔØ ÕÓÅÞÅÎÎÙÍ ÇÅÏÍÅÔÒÉÞÅÓËÉÍ ÒÁÓÐÒÅÄÅÌÅÎÉÅÍ Ó ÏÇÒÁ-
ÎÉÞÅÎÉÅÍ ÎÁ ÞÉÓÌÏ ÏÐÙÔÏ×.
÷ ÏÓÎÏ×Õ ÇÉÐÅÒÇÅÏÍÅÔÒÉÞÅÓËÏÇÏ ÒÁÓÐÒÅÄÅÌÅÎÉÑ ÐÏÌÏÖÅÎÁ ÆÏÒÍÕÌÁ
P (X = m) =
C
m
M
· C
nm
NM
C
n
N
, m = 0, 1, . . ., n,
ÐÏÌÕÞÁÅÍÁÑ ÐÒÉ ÒÅÛÅÎÉÉ ÓÌÅÄÕÀÝÅÊ ÚÁÄÁÞÉ Ï ×ÙÂÏÒËÅ: × ÐÁÒÔÉÉ ÉÚ N ÄÅÔÁ-
ÌÅÊ ÒÏ×ÎÏ M ÓÔÁÎÄÁÒÔÎÙÈ. îÁÕÄÁÞÕ ÏÔÏÂÒÁÎÏ n ÄÅÔÁÌÅÊ. îÁÊÔÉ ×ÅÒÏÑÔÎÏÓÔØ
ÔÏÇÏ, ÞÔÏ ÓÒÅÄÉ ÎÉÈ ÒÏ×ÎÏ m ÄÅÔÁÌÅÊ ÓÔÁÎÄÁÒÔÎÙÈ.
þÉÓÌÏ×ÙÅ ÈÁÒÁËÔÅÒÉÓÔÉËÉ ÓÌÕÞÁÊÎÙÈ ×ÅÌÉÞÉÎ
ðÅÒ×ÏÊ ÞÉÓÌÏ×ÏÊ ÈÁÒÁËÔÅÒÉÓÔÉËÏÊ ÓÌÕÞÁÊÎÏÊ ×ÅÌÉÞÉÎÙ Ñ×ÌÑÅÔÓÑ ÍÁÔÅ-
ÍÁÔÉÞÅÓËÏÅ ÏÖÉÄÁÎÉÅ. äÌÑ ÄÉÓËÒÅÔÎÏÊ ÓÌÕÞÁÊÎÏÊ ×ÅÌÉÞÉÎÙ ÍÁÔÅÍÁÔÉÞÅ-
ÓËÏÅ ÏÖÉÄÁÎÉÅ ¡ ÜÔÏ ÓÕÍÍÁ ÐÒÏÉÚ×ÅÄÅÎÉÊ ×ÓÅÈ ×ÏÚÍÏÖÎÙÈ ÚÎÁÞÅÎÉÊ ÎÁ ÓÏ-
ÏÔ×ÅÔÓÔ×ÕÀÝÉÅ ×ÅÒÏÑÔÎÏÓÔÉ, Ô.Å.
M(X) =
n
X
i=1
x
i
p
i
.
íÁÔÅÍÁÔÉÞÅÓËÏÅ ÏÖÉÄÁÎÉÅ Ñ×ÌÑÅÔÓÑ ÔÅÏÒÅÔÉÞÅÓËÉÍ ÓÒÅÄÎÉÍ ÚÎÁÞÅÎÉÅÍ
ÓÌÕÞÁÊÎÏÊ ×ÅÌÉÞÉÎÙ. ðÒÉ ÂÏÌØÛÏÍ ÞÉÓÌÅ ÉÓÐÙÔÁÎÉÊ ÍÁÔÅÍÁÔÉÞÅÓËÏÅ ÏÖÉ-
ÄÁÎÉÅ ÐÒÉÍÅÒÎÏ ÒÁ×ÎÏ ÓÒÅÄÎÅÍÕ ÁÒÉÆÍÅÔÉÞÅÓËÏÍÕ:
x =
x
1
+ x
2
+ . . . + x
n
n
,
Ô.Å. M(X)
x ÐÒÉ ÄÏÓÔÁÔÏÞÎÏ ÂÏÌØÛÉÈ ÚÎÁÞÅÎÉÑÈ n.
ðÅÒÅÞÉÓÌÉÍ ÏÓÎÏ×ÎÙÅ Ó×ÏÊÓÔ×Á ÍÁÔÅÍÁÔÉÞÅÓËÏÇÏ ÏÖÉÄÁÎÉÑ:
1) M(C) = C, ÇÄÅ C ¡ ËÏÎÓÔÁÎÔÁ;
2) M(CX) = C · M(X);
3) M(X · Y ) = M(X) · M(Y ), ÇÄÅ X, Y ¡ Ä×Å ÎÅÚÁ×ÉÓÉÍÙÅ ÓÌÕÞÁÊÎÙÅ
×ÅÌÉÞÉÎÙ;
4) M(X + Y ) = M(X) + M(Y );
5) ÍÁÔÅÍÁÔÉÞÅÓËÏÅ ÏÖÉÄÁÎÉÅ M(X) ÞÉÓÌÁ ÐÏÑ×ÌÅÎÉÊ ÓÏÂÙÔÉÑ A × n ÎÅÚÁ-
×ÉÓÉÍÙÈ ÉÓÐÙÔÁÎÉÑÈ ÒÁ×ÎÏ ÐÒÏÉÚ×ÅÄÅÎÉÀ ÞÉÓÌÁ ÉÓÐÙÔÁÎÉÊ ÎÁ ×ÅÒÏÑÔÎÏÓÔØ
ÐÏÑ×ÌÅÎÉÑ ÓÏÂÙÔÉÑ × ËÁÖÄÏÍ ÉÓÐÙÔÁÎÉÉ, Ô.Å. M(X) = np. ÷ÅÌÉÞÉÎÁ X
ÐÒÉ ÕËÁÚÁÎÎÙÈ ÕÓÌÏ×ÉÑÈ ÐÏÄÞÉÎÅÎÁ ÂÉÎÏÍÉÁÌØÎÏÍÕ ÒÁÓÐÒÅÄÅÌÅÎÉÀ, ÐÏÜÔÏ-
ÍÕ ÒÁÓÓÍÁÔÒÉ×ÁÅÍÏÅ Ó×ÏÊÓÔ×Ï ÍÏÖÎÏ ÓÆÏÒÍÕÌÉÒÏ×ÁÔØ ÔÁË: ÍÁÔÅÍÁÔÉÞÅÓËÏÅ
32                                           2. ëÏÎÔÒÏÌØÎÁÑ ÒÁÂÏÔÁ ½5

   åÓÌÉ ÎÅÚÁ×ÉÓÉÍÙÅ ÉÓÐÙÔÁÎÉÑ ÐÒÏ×ÏÄÑÔÓÑ ÄÏ ÐÅÒ×ÏÇÏ ÐÏÑ×ÌÅÎÉÑ ÓÏÂÙÔÉÑ
A, ËÁË × ÐÒÅÄÙÄÕÝÅÍ ÓÌÕÞÁÅ, ÎÏ ÐÒÏ×ÏÄÉÔÓÑ ÎÅ ÂÏÌÅÅ n ÏÐÙÔÏ×, ÔÏ ÚÁËÏÎ
ÒÁÓÐÒÅÄÅÌÅÎÉÑ ÂÕÄÅÔ ÔÁËÉÍ:
                    X = m 1 2 3 ...            n
                                   2
                      P    p qp q p . . . q p + q n
                                           n−1

   åÇÏ ÍÏÖÎÏ ÎÁÚ×ÁÔØ ÕÓÅÞÅÎÎÙÍ ÇÅÏÍÅÔÒÉÞÅÓËÉÍ ÒÁÓÐÒÅÄÅÌÅÎÉÅÍ Ó ÏÇÒÁ-
ÎÉÞÅÎÉÅÍ ÎÁ ÞÉÓÌÏ ÏÐÙÔÏ×.
   ÷ ÏÓÎÏ×Õ ÇÉÐÅÒÇÅÏÍÅÔÒÉÞÅÓËÏÇÏ ÒÁÓÐÒÅÄÅÌÅÎÉÑ ÐÏÌÏÖÅÎÁ ÆÏÒÍÕÌÁ
                           m
                          CM · CNn−m
                                  −M
              P (X = m) =      n     ,    m = 0, 1, . . . , n,
                             CN
ÐÏÌÕÞÁÅÍÁÑ ÐÒÉ ÒÅÛÅÎÉÉ ÓÌÅÄÕÀÝÅÊ ÚÁÄÁÞÉ Ï ×ÙÂÏÒËÅ: × ÐÁÒÔÉÉ ÉÚ N ÄÅÔÁ-
ÌÅÊ ÒÏ×ÎÏ M ÓÔÁÎÄÁÒÔÎÙÈ. îÁÕÄÁÞÕ ÏÔÏÂÒÁÎÏ n ÄÅÔÁÌÅÊ. îÁÊÔÉ ×ÅÒÏÑÔÎÏÓÔØ
ÔÏÇÏ, ÞÔÏ ÓÒÅÄÉ ÎÉÈ ÒÏ×ÎÏ m ÄÅÔÁÌÅÊ ÓÔÁÎÄÁÒÔÎÙÈ.
   þÉÓÌÏ×ÙÅ ÈÁÒÁËÔÅÒÉÓÔÉËÉ ÓÌÕÞÁÊÎÙÈ ×ÅÌÉÞÉÎ
   ðÅÒ×ÏÊ ÞÉÓÌÏ×ÏÊ ÈÁÒÁËÔÅÒÉÓÔÉËÏÊ ÓÌÕÞÁÊÎÏÊ ×ÅÌÉÞÉÎÙ Ñ×ÌÑÅÔÓÑ ÍÁÔÅ-
ÍÁÔÉÞÅÓËÏÅ ÏÖÉÄÁÎÉÅ. äÌÑ ÄÉÓËÒÅÔÎÏÊ ÓÌÕÞÁÊÎÏÊ ×ÅÌÉÞÉÎÙ ÍÁÔÅÍÁÔÉÞÅ-
ÓËÏÅ ÏÖÉÄÁÎÉÅ ¡ ÜÔÏ ÓÕÍÍÁ ÐÒÏÉÚ×ÅÄÅÎÉÊ ×ÓÅÈ ×ÏÚÍÏÖÎÙÈ ÚÎÁÞÅÎÉÊ ÎÁ ÓÏ-
ÏÔ×ÅÔÓÔ×ÕÀÝÉÅ ×ÅÒÏÑÔÎÏÓÔÉ, Ô.Å.
                                   Xn
                           M(X) =     xi p i .
                                    i=1
   íÁÔÅÍÁÔÉÞÅÓËÏÅ ÏÖÉÄÁÎÉÅ Ñ×ÌÑÅÔÓÑ ÔÅÏÒÅÔÉÞÅÓËÉÍ ÓÒÅÄÎÉÍ ÚÎÁÞÅÎÉÅÍ
ÓÌÕÞÁÊÎÏÊ ×ÅÌÉÞÉÎÙ. ðÒÉ ÂÏÌØÛÏÍ ÞÉÓÌÅ ÉÓÐÙÔÁÎÉÊ ÍÁÔÅÍÁÔÉÞÅÓËÏÅ ÏÖÉ-
ÄÁÎÉÅ ÐÒÉÍÅÒÎÏ ÒÁ×ÎÏ ÓÒÅÄÎÅÍÕ ÁÒÉÆÍÅÔÉÞÅÓËÏÍÕ:
                            x1 + x 2 + . . . + x n
                         x=                        ,
                                     n
Ô.Å. M(X) ≈ x ÐÒÉ ÄÏÓÔÁÔÏÞÎÏ ÂÏÌØÛÉÈ ÚÎÁÞÅÎÉÑÈ n.
   ðÅÒÅÞÉÓÌÉÍ ÏÓÎÏ×ÎÙÅ Ó×ÏÊÓÔ×Á ÍÁÔÅÍÁÔÉÞÅÓËÏÇÏ ÏÖÉÄÁÎÉÑ:
   1) M(C) = C, ÇÄÅ C ¡ ËÏÎÓÔÁÎÔÁ;
   2) M(CX) = C · M(X);
   3) M(X · Y ) = M(X) · M(Y ), ÇÄÅ X, Y ¡ Ä×Å ÎÅÚÁ×ÉÓÉÍÙÅ ÓÌÕÞÁÊÎÙÅ
×ÅÌÉÞÉÎÙ;
   4) M(X + Y ) = M(X) + M(Y );
   5) ÍÁÔÅÍÁÔÉÞÅÓËÏÅ ÏÖÉÄÁÎÉÅ M(X) ÞÉÓÌÁ ÐÏÑ×ÌÅÎÉÊ ÓÏÂÙÔÉÑ A × n ÎÅÚÁ-
×ÉÓÉÍÙÈ ÉÓÐÙÔÁÎÉÑÈ ÒÁ×ÎÏ ÐÒÏÉÚ×ÅÄÅÎÉÀ ÞÉÓÌÁ ÉÓÐÙÔÁÎÉÊ ÎÁ ×ÅÒÏÑÔÎÏÓÔØ
ÐÏÑ×ÌÅÎÉÑ ÓÏÂÙÔÉÑ × ËÁÖÄÏÍ ÉÓÐÙÔÁÎÉÉ, Ô.Å. M(X) = np. ÷ÅÌÉÞÉÎÁ X
ÐÒÉ ÕËÁÚÁÎÎÙÈ ÕÓÌÏ×ÉÑÈ ÐÏÄÞÉÎÅÎÁ ÂÉÎÏÍÉÁÌØÎÏÍÕ ÒÁÓÐÒÅÄÅÌÅÎÉÀ, ÐÏÜÔÏ-
ÍÕ ÒÁÓÓÍÁÔÒÉ×ÁÅÍÏÅ Ó×ÏÊÓÔ×Ï ÍÏÖÎÏ ÓÆÏÒÍÕÌÉÒÏ×ÁÔØ ÔÁË: ÍÁÔÅÍÁÔÉÞÅÓËÏÅ