Курс теоретической механики для химиков. Казаков К.А. - 62 стр.

UptoLike

Составители: 

Рубрика: 

df
dt
= {H, f} +
f
t
.
f, g, h,
λ
t
{f, g} = −{g, f},
{f + h, g} = {f, g} + {h, g},
{fh, g} = h{f, g} + f{h, g},
λ
{f, g} =
½
f
λ
, g
¾
+
½
f,
g
λ
¾
.
{fh, g} =
s
X
α=1
µ
(fh)
p
α
g
q
α
(fh)
q
α
g
p
α
=
s
X
α=1
µ
h
f
p
α
g
q
α
+ f
h
p
α
g
q
α
h
f
q
α
g
p
α
f
h
q
α
g
p
α
= h
s
X
α=1
µ
f
p
α
g
q
α
f
q
α
g
p
α
+ f
s
X
α=1
µ
h
p
α
g
q
α
h
q
α
g
p
α
= h{f, g} + f{h, g}.
f, g, h
{f, {g, h}} + {g, {h, f}} + {h, {f, g}} = 0 .
f, g, h q, p.
2
f/∂p
α
p
β
,
2
f/∂q
α
q
β
,
2
f/∂q
α
p
β
2
f/∂p
α
p
β
.
èëè
                                   df             ∂f
                                      = {H, f } +    .                             (179)
                                   dt             ∂t
Îêàçûâàåòñÿ, ÷òî çíà÷åíèå îïåðàöèè, îïðåäåëåííîé â (176), ïðîñòèðàåòñÿ ãîðàçäî äàëü-
øå ïðîñòûõ ñîîáðàæåíèé óäîáñòâà. Ñêîáêè Ïóàññîíà îáëàäàþò ðÿäîì âàæíûõ ñâîéñòâ,
äëÿ âûâîäà êîòîðûõ ïðèâåäåì ñíà÷àëà íåñêîëüêî ïðîñòûõ ïðàâèë èõ âû÷èñëåíèÿ, íåïî-
ñðåäñòâåííî ñëåäóþùèõ èç îïðåäåëåíèÿ. Äëÿ ëþáûõ ôóíêöèé f, g, h, çàâèñÿùèõ îò
îáîáùåííûõ êîîðäèíàò è èìïóëüñîâ, à òàêæå, âîçìîæíî, îò íåêîòîðîãî ïàðàìåòðà λ
(ðîëü êîòîðîãî ìîæåò èãðàòü, íàïðèìåð, âðåìÿ t)

                               {f, g}    = −{g, f } ,                              (180)
                           {f + h, g}    = {f, g} + {h, g} ,                       (181)
                              {f h, g}   = h{f, g} + f {h, g} ,                    (182)
                                           ½       ¾ ½          ¾
                             ∂               ∂f              ∂g
                               {f, g}    =      , g + f,          .                (183)
                            ∂λ               ∂λ              ∂λ

Äîêàæåì, íàïðèìåð, ñâîéñòâî (182). Èìååì

                     Xs µ                            ¶
                           ∂(f h) ∂g     ∂(f h) ∂g
          {f h, g} =                   −
                     α=1
                            ∂pα ∂qα       ∂qα ∂pα
                     Xs  µ                                                  ¶
                             ∂f ∂g        ∂h ∂g        ∂f ∂g         ∂h ∂g
                   =       h           +f           −h           −f
                     α=1
                             ∂p α ∂q α    ∂p α ∂q α    ∂q α ∂p α    ∂qα ∂pα
                       Xs µ                       ¶     Xs µ                   ¶
                              ∂f ∂g      ∂f ∂g                  ∂h ∂g    ∂h ∂g
                   = h                 −            +f                 −
                       α=1
                             ∂pα ∂qα ∂qα ∂pα            α=1
                                                               ∂pα ∂qα ∂qα ∂pα
                  = h{f, g} + f {h, g} .

Äîêàæåì òåïåðü ñëåäóþùåå âàæíîå è íåòðèâèàëüíîå ñâîéñòâî ñêîáîê Ïóàññîíà: äëÿ
ëþáûõ òðåõ ôóíêöèé f, g, h ñïðàâåäëèâî òîæäåñòâî ßêîáè

                      {f, {g, h}} + {g, {h, f }} + {h, {f, g}} = 0 .               (184)

Ýòî òîæäåñòâî ïðîâåðÿåòñÿ ïðÿìûì âû÷èñëåíèåì. Ëåâàÿ åãî ÷àñòü ïðåäñòàâëÿåò ñî-
áîé ñóììó ÷ëåíîâ, êàæäûé èç êîòîðûõ ïðîïîðöèîíàëåí âòîðîé ïðîèçâîäíîé îäíîé èç
ôóíêöèé f, g, h ïî ïåðåìåííûì q, p. Â ñèëó ñèììåòðèè îòíîñèòåëüíî ïåðåñòàíîâêè ýòèõ
ôóíêöèé, äîñòàòî÷íî äîêàçàòü, ÷òî êàæäàÿ èç ïðîèçâîäíûõ ∂ 2 f /∂pα ∂pβ , ∂ 2 f /∂qα ∂qβ ,
∂ 2 f /∂qα ∂pβ âõîäèò â ëåâóþ ÷àñòü (184) ñ íóëåâûì êîýôôèöèåíòîì. Ïðîâåðèì ýòî, íà-
ïðèìåð, äëÿ âòîðûõ ïðîèçâîäíûõ ∂ 2 f /∂pα ∂pβ . Îòìå÷àÿ ÷ëåíû, íå ñîäåðæàùèå ïðîèç-




                                             62