Курс теоретической механики для химиков. Казаков К.А. - 63 стр.

UptoLike

Составители: 

Рубрика: 

2
f/∂p
α
p
β
,
{f, {g, h}} = 0 + ··· ,
{g, {h, f}} =
(
g,
s
X
α=1
h
q
α
f
p
α
)
+ ··· =
s
X
β=1
g
q
β
p
β
Ã
s
X
α=1
h
q
α
f
p
α
!
+ ···
=
s
X
α,β=1
g
q
β
h
q
α
2
f
p
β
p
α
+ ··· ,
{h, {f, g}} =
(
h,
s
X
α=1
f
p
α
g
q
α
)
+ ··· =
s
X
β=1
h
q
β
p
β
Ã
s
X
α=1
f
p
α
g
q
α
!
+ ···
=
s
X
α,β=1
h
q
β
2
f
p
β
p
α
g
q
α
+ ··· =
s
X
α,β=1
h
q
α
2
f
p
α
p
β
g
q
β
+ ··· .
2
f/∂p
α
p
β
,
f(q, p, t) g(q, p, t)
˙
f = ˙g = 0,
{f, g}. f g
f
t
= −{H, f},
g
t
= −{H, g}.
{f, g}
d{f, g}
dt
= {H, {f, g}} +
{f, g}
t
.
d{f, g}
dt
= {H, {f, g}} {{H, f}, g} {f, {H, g}},
d{f, g}
dt
= {H, {f, g}} + {g, {H, f}} + {f, {g, H}}.
âîäíûõ ∂ 2 f /∂pα ∂pβ , ìíîãîòî÷èåì, èìååì

    {f, {g, h}} = 0 + · · · ,
                  (         s
                                         )            s
                                                                   Ã    s
                                                                                     !
                          X    ∂h ∂f                 X   ∂g ∂          X   ∂h ∂f
    {g, {h, f }} = g, −                    + ··· = −                 −                 + ···
                           α=1
                               ∂q α ∂p α
                                                     β=1
                                                         ∂q β ∂p β     α=1
                                                                           ∂q α ∂p α

                  Xs
                       ∂g ∂h ∂ 2 f
                =                       + ··· ,
                 α,β=1
                       ∂q β ∂qα ∂pβ ∂pα
                 (     s
                                   )             s
                                                           Ã s          !
                     X     ∂f ∂g                X   ∂h ∂    X ∂f ∂g
    {h, {f, g}} = h,                 + ··· = −                            + ···
                      α=1
                           ∂pα ∂qα              β=1
                                                    ∂qβ ∂pβ α=1 ∂pα ∂qα
                     Xs                               Xs
                          ∂h ∂ 2 f ∂g                      ∂h ∂ 2 f ∂g
                = −                        + ··· = −                        + ··· .
                    α,β=1
                          ∂q β ∂pβ ∂pα ∂qα
                                                     α,β=1
                                                           ∂q α ∂pα ∂pβ ∂qβ


Ñêëàäûâàÿ ýòè âûðàæåíèÿ è ó÷èòûâàÿ ïåðåñòàíîâî÷íîñòü âòîðûõ ïðîèçâîäíûõ, ìû
âèäèì, ÷òî ÷ëåíû, ñîäåðæàùèå ïðîèçâîäíûå ∂ 2 f /∂pα ∂pβ , äåéñòâèòåëüíî ñîêðàùàþòñÿ.
   Òåïåðü ñ ïîìîùüþ òîæäåñòâà ßêîáè ìû äîêàæåì ñëåäóþùåå èíòåðåñíîå óòâåðæäå-
íèå, íàçûâàåìîå òåîðåìîé Ïóàññîíà: Åñëè äâå ôóíêöèè f (q, p, t) è g(q, p, t) ÿâëÿþòñÿ
èíòåãðàëàìè äâèæåíèÿ, ò.å. f˙ = ġ = 0, òî èíòåãðàëîì äâèæåíèÿ ÿâëÿåòñÿ è èõ ñêîá-
êà Ïóàññîíà {f, g} . Äîêàçàòåëüñòâî. Ïîñêîëüêó ïî óñëîâèþ òåîðåìû f è g îñòàþòñÿ
ïîñòîÿííûìè ïðè äâèæåíèè ñèñòåìû, òî èç ôîðìóëû (179) ñëåäóåò, ÷òî

                            ∂f                     ∂g
                               = −{H, f } ,           = −{H, g} .                              (185)
                            ∂t                     ∂t
Âû÷èñëèì ïîëíóþ ïðîèçâîäíóþ ïî âðåìåíè îò {f, g} ïî ôîðìóëå (179):

                              d{f, g}                 ∂{f, g}
                                      = {H, {f, g}} +         .
                                dt                      ∂t
Ïðèìåíÿÿ ïðàâèëî (183) äèôôåðåíöèðîâàíèÿ ñêîáêè Ïóàññîíà ïî ïàðàìåòðó è ó÷èòû-
âàÿ óðàâíåíèÿ (185), ïîëó÷àåì

                    d{f, g}
                            = {H, {f, g}} − {{H, f }, g} − {f, {H, g}} ,
                      dt
èëè, ïåðåñòàâëÿÿ àðãóìåíòû ñêîáîê Ïóàññîíà ïî ïðàâèëó (180),

                    d{f, g}
                            = {H, {f, g}} + {g, {H, f }} + {f, {g, H}} .
                      dt
Ïðàâàÿ ÷àñòü ïîñëåäíåãî ðàâåíñòâà ðàâíà íóëþ â ñèëó òîæäåñòâà ßêîáè. Òåîðåìà äî-
êàçàíà.


  Âû÷èñëåíèå ñêîáîê Ïóàññîíà

  Ïðàêòè÷åñêè íàèáîëåå óäîáíî âû÷èñëÿòü ñêîáêè Ïóàññîíà, ïîñëåäîâàòåëüíî óïðî-
ùàÿ èõ ñ ïîìîùüþ ïðàâèë (180)  (182). Åñëè õîòÿ áû îäèí èç àðãóìåíòîâ äàííîé

                                              63