Курс теоретической механики для химиков. Казаков К.А. - 74 стр.

UptoLike

Составители: 

Рубрика: 

q
(2)
δt
2
.
S(q
(1)
, t
1
; q
(2)
, t
2
+ δt
2
) S(q
(1)
, t
1
; q
(2)
, t
2
)
=
t
2
+δt
2
Z
t
1
Ã
s
X
α=1
(¯p
α
+ δ¯p
α
)(
˙
¯q
α
+ δ
˙
¯q
α
) H(¯q + δ¯q, ¯p + δ¯p, t)
!
dt
t
2
Z
t
1
Ã
s
X
α=1
¯p
α
˙
¯q
α
H(¯q, ¯p, t)
!
dt .
δt
2
S(q
(1)
, t
1
; q
(2)
, t
2
+ δt
2
) S(q
(1)
, t
1
; q
(2)
, t
2
) =
Ã
s
X
α=1
¯p
α
˙
¯q
α
¯
H
!
t=t
2
δt
2
+
t
2
Z
t
1
s
X
α=1
Ã
¯p
α
δ
˙
¯q
α
+
˙
¯q
α
δ¯p
α
H(q, ¯p, t)
q
α
¯
¯
¯
¯
q=¯q
δ¯q
α
H(¯q, p, t)
p
α
¯
¯
¯
¯
p=¯p
δ¯p
α
!
dt ,
¯
H H(¯q, ¯p, t)
¯q(t), ¯p(t)
S(q
(1)
, t
1
; q
(2)
, t
2
+ δt
2
) S(q
(1)
, t
1
; q
(2)
, t
2
) =
Ã
s
X
α=1
¯p
α
˙
¯q
α
¯
H
!
t=t
2
δt
2
+
"
s
X
α=1
¯p
α
δ¯q
α
#
t
2
t
1
.
δ¯q(t
2
) ¯q(t) + δ¯q(t) :
(¯q
α
+ δ¯q
α
)(t
2
+ δt
2
) = q
(2)
α
,
δt
2
,
¯q
α
(t
2
) +
˙
¯q
α
(t
2
)δt
2
+ δ¯q
α
(t
2
) = q
(2)
α
.
¯q(t)
¯q
α
(t
2
) = q
(2)
α
,
δ¯q
α
(t
2
) =
˙
¯q
α
(t
2
)δt
2
.
S(q
(1)
, t
1
; q
(2)
, t
2
+ δt
2
) S(q
(1)
, t
1
; q
(2)
, t
2
)
=
Ã
s
X
α=1
¯p
α
(t
2
)
˙
¯q
α
(t
2
)
¯
H(t
2
)
!
δt
2
s
X
α=1
¯p
α
(t
2
)
˙
¯q
α
(t
2
)δt
2
=
¯
H(t
2
)δt
2
,
S(q
(1)
, t
1
; q
(2)
, t
2
+ δt
2
) S(q
(1)
, t
1
; q
(2)
, t
2
) =
S
t
2
δt
2
.
ñ êîîðäèíàòàìè q (2) ïðèõîäèò ñ ðàçíèöåé âî âðåìåíè, ðàâíîé δt2 . Ñîîòâåòñòâóþùàÿ
ðàçíîñòü â âåëè÷èíå äåéñòâèÿ åñòü

S(q (1) , t1 ; q (2) , t2 + δt2 ) − S(q (1) , t1 ; q (2) , t2 )
   t2Z+δt2Ã s                                                                   !     Zt2 ÃX
                                                                                           s
                                                                                                                    !
               X
=                    (p̄α + δ p̄α )(q̄˙α + δ q̄˙α ) − H(q̄ + δ q̄, p̄ + δ p̄, t) dt −        p̄α q̄˙α − H(q̄, p̄, t) dt .
    t1         α=1                                                                           t1         α=1


Ðàçëàãàÿ ïåðâûé èíòåãðàë ïî δt2 ñ ïîìîùüþ ôîðìóëû Íüþòîíà-Ëåéáíèöà, íàõîäèì
                                                                             Ã s               !
                                                                              X
           S(q (1) , t1 ; q (2) , t2 + δt2 ) − S(q (1) , t1 ; q (2) , t2 ) =     p̄α q̄˙α − H̄   δt2
                                                                                         α=1                      t=t2
                      Zt2 Xs
                              Ã                                        ¯                       ¯      !
                                                         ∂H(q, p̄, t) ¯¯         ∂H(q̄, p, t) ¯¯
                    +          p̄α δ q̄˙α + q̄˙α δ p̄α −               ¯ δ q̄α −               ¯ δ p̄α dt ,
                          α=1
                                                           ∂q α          q=q̄      ∂p  α         p=p̄
                       t1


ãäå H̄ ≡ H(q̄, p̄, t) åñòü çíà÷åíèå ôóíêöèè Ãàìèëüòîíà íà äåéñòâèòåëüíîé òðàåêòîðèè.
Ïðåîáðàçóÿ èíòåãðàëüíûé ÷ëåí êàê è âûøå ñ ïîìîùüþ èíòåãðèðîâàíèÿ ïî ÷àñòÿì è
ó÷èòûâàÿ, ÷òî q̄(t), p̄(t) óäîâëåòâîðÿþò óðàâíåíèÿ Ãàìèëüòîíà, ïîëó÷àåì
                                                                             Ã s                    !             " s                 #t2
                                                                              X                                    X
         S(q (1) , t1 ; q (2) , t2 + δt2 ) − S(q (1) , t1 ; q (2) , t2 ) =          p̄α q̄˙α − H̄         δt2 +           p̄α δ q̄α         .
                                                                              α=1                       t=t2        α=1                t1

Äëÿ îïðåäåëåíèÿ âåëè÷èíû δ q̄(t2 ) çàïèøåì óñëîâèå (225) äëÿ ôóíêöèè q̄(t) + δ q̄(t) :

                                                 (q̄α + δ q̄α )(t2 + δt2 ) = qα(2) ,

îòêóäà, ðàçëàãàÿ ëåâóþ ÷àñòü ðàâåíñòâà ïî ìàëîìó δt2 , íàéäåì

                                            q̄α (t2 ) + q̄˙α (t2 )δt2 + δ q̄α (t2 ) = qα(2) .

Ó÷èòûâàÿ, ÷òî â ñèëó óñëîâèé (46) äëÿ ôóíêöèè q̄(t)

                                                           q̄α (t2 ) = qα(2) ,

ïîëó÷àåì
                                                     δ q̄α (t2 ) = −q̄˙α (t2 )δt2 .
Òàêèì îáðàçîì,

                     S(q (1) , t1 ; q (2) , t2 + δt2 ) − S(q (1) , t1 ; q (2) , t2 )
                       Ã s                                    !             s
                          X                                               X
                     =           p̄α (t2 )q̄˙α (t2 ) − H̄(t2 ) δt2 −             p̄α (t2 )q̄˙α (t2 )δt2 = −H̄(t2 )δt2 ,                (226)
                            α=1                                          α=1

Ñ äðóãîé ñòîðîíû, ñîãëàñíî îïðåäåëåíèþ ÷àñòíîé ïðîèçâîäíîé
                                                                                                    ∂S
                               S(q (1) , t1 ; q (2) , t2 + δt2 ) − S(q (1) , t1 ; q (2) , t2 ) =        δt2 .
                                                                                                    ∂t2

                                                                  74