Курс теоретической механики для химиков. Казаков К.А. - 80 стр.

UptoLike

Составители: 

Рубрика: 

t, φ S/∂t, S/∂φ.
S = S
0
(t) + S
1
(φ) + S
0
(r, θ)
dS
0
dt
= C
1
,
dS
1
= C
2
,
C
1
+
1
2m
(
µ
S
0
r
2
+
C
2
2
r
2
sin
2
θ
+
1
r
2
µ
S
0
θ
2
)
+
d cos θ
r
2
= 0 .
S
0
= C
1
t , S
1
= C
2
φ .
2mC
1
+
µ
S
0
r
2
+
1
r
2
"
C
2
2
sin
2
θ
+
µ
S
0
θ
2
+ 2md cos θ
#
= 0 .
θ
S
0
= S
3
(θ) + S
4
(r)
C
2
2
sin
2
θ
+
µ
dS
3
2
+ 2md cos θ = C
3
,
2mC
1
+
µ
dS
4
dr
2
+
C
3
r
2
= 0 .
S
3
=
θ
Z
θ
0
±
r
C
3
2md cos θ
C
2
2
sin
2
θ
,
S
4
=
r
Z
r
0
±
r
2mC
1
C
3
r
2
dr .
S = A + C
1
t + C
2
φ +
θ
Z
θ
0
±
r
C
3
2md cos θ
C
2
2
sin
2
θ
+
r
Z
r
0
±
r
2mC
1
C
3
r
2
dr .
A,
C
1
, C
2
, C
3
, θ
0
, r
0
. θ
0
, r
0
A,
Ïåðåìåííûå t, φ âõîäÿò â ýòî óðàâíåíèå ëèøü ÷åðåç ïðîèçâîäíûå ∂S/∂t, ∂S/∂φ.  ñî-
îòâåòñòâèè ñ ìåòîäîì ðàçäåëåíèÿ ïåðåìåííûõ èùåì ðåøåíèå â âèäå

                                    S = S0 (t) + S1 (φ) + S 0 (r, θ)

è ïðèõîäèì ê óðàâíåíèÿì
              dS0       dS1
                  = C1 ,     = C2 ,
               dt        dφ
                       (µ      ¶2             µ    ¶2 )
                     1    ∂S 0        C22   1 ∂S 0        d cos θ
               C1 +               + 2 2 + 2             +         = 0.
                    2m    ∂r        r sin θ r   ∂θ          r2

Ïåðâûå äâà èç ýòèõ óðàâíåíèé èíòåãðèðóþòñÿ òðèâèàëüíî:

                                          S0 = C 1 t ,     S1 = C2 φ .

Ïåðåïèøåì ïîñëåäíåå óðàâíåíèå â âèäå
                     µ 0 ¶2       "        µ 0 ¶2            #
                       ∂S       1    C22    ∂S
            2mC1 +          + 2          +        + 2md cos θ = 0 .
                       ∂r      r sin2 θ     ∂θ

Èç ýòîé çàïèñè âèäíî, ÷òî ïåðåìåííàÿ θ îòäåëÿåòñÿ, ïîýòîìó ìû ïîëàãàåì

                                           S 0 = S3 (θ) + S4 (r)

è ïîëó÷àåì óðàâíåíèÿ
                                           µ         ¶2
                                  C22          dS3
                                       +           + 2md cos θ = C3 ,
                                sin2 θ          dθ
                                                µ     ¶2
                                                  dS4      C3
                                         2mC1 +          + 2 = 0.
                                                   dr      r
Èõ ðåøåíèÿ èìåþò âèä
                                     Zθ       r
                                                                         C22
                           S3 =           ±    C3 − 2md cos θ −               dθ ,
                                                                       sin2 θ
                                    θ0
                                    Zr        r
                                                             C3
                           S4 =           ±    −2mC1 −          dr .
                                                             r2
                                    r0

Èòàê, ìû íàøëè ðåøåíèå óðàâíåíèÿ Ãàìèëüòîíà-ßêîáè â âèäå
                           Zθ       r                                       Zr       r
                                                        C22                                        C3
   S = A + C1 t + C2 φ +        ±    C3 − 2md cos θ −        dθ +                ±       −2mC1 −      dr . (247)
                                                      sin2 θ                                       r2
                           θ0                                               r0

Ýòî ðåøåíèå ñîäåðæèò, ïîìèìî ïðîèçâîëüíîé àääèòèâíîé ïîñòîÿííîé A, ïðîèçâîëüíûå
ïîñòîÿííûå C1 , C2 , C3 , θ0 , r0 . Îäíàêî èçìåíåíèå θ0 , r0 ýêâèâàëåíòíî ïåðåîïðåäåëåíèþ A,

                                                      80