ВУЗ:
Составители:
Рубрика:
t, φ ∂S/∂t, ∂S/∂φ.
S = S
0
(t) + S
1
(φ) + S
0
(r, θ)
dS
0
dt
= C
1
,
dS
1
dφ
= C
2
,
C
1
+
1
2m
(
µ
∂S
0
∂r
¶
2
+
C
2
2
r
2
sin
2
θ
+
1
r
2
µ
∂S
0
∂θ
¶
2
)
+
d cos θ
r
2
= 0 .
S
0
= C
1
t , S
1
= C
2
φ .
2mC
1
+
µ
∂S
0
∂r
¶
2
+
1
r
2
"
C
2
2
sin
2
θ
+
µ
∂S
0
∂θ
¶
2
+ 2md cos θ
#
= 0 .
θ
S
0
= S
3
(θ) + S
4
(r)
C
2
2
sin
2
θ
+
µ
dS
3
dθ
¶
2
+ 2md cos θ = C
3
,
2mC
1
+
µ
dS
4
dr
¶
2
+
C
3
r
2
= 0 .
S
3
=
θ
Z
θ
0
±
r
C
3
− 2md cos θ −
C
2
2
sin
2
θ
dθ ,
S
4
=
r
Z
r
0
±
r
−2mC
1
−
C
3
r
2
dr .
S = A + C
1
t + C
2
φ +
θ
Z
θ
0
±
r
C
3
− 2md cos θ −
C
2
2
sin
2
θ
dθ +
r
Z
r
0
±
r
−2mC
1
−
C
3
r
2
dr .
A,
C
1
, C
2
, C
3
, θ
0
, r
0
. θ
0
, r
0
A,
Ïåðåìåííûå t, φ âõîäÿò â ýòî óðàâíåíèå ëèøü ÷åðåç ïðîèçâîäíûå ∂S/∂t, ∂S/∂φ.  ñî- îòâåòñòâèè ñ ìåòîäîì ðàçäåëåíèÿ ïåðåìåííûõ èùåì ðåøåíèå â âèäå S = S0 (t) + S1 (φ) + S 0 (r, θ) è ïðèõîäèì ê óðàâíåíèÿì dS0 dS1 = C1 , = C2 , dt dφ (µ ¶2 µ ¶2 ) 1 ∂S 0 C22 1 ∂S 0 d cos θ C1 + + 2 2 + 2 + = 0. 2m ∂r r sin θ r ∂θ r2 Ïåðâûå äâà èç ýòèõ óðàâíåíèé èíòåãðèðóþòñÿ òðèâèàëüíî: S0 = C 1 t , S1 = C2 φ . Ïåðåïèøåì ïîñëåäíåå óðàâíåíèå â âèäå µ 0 ¶2 " µ 0 ¶2 # ∂S 1 C22 ∂S 2mC1 + + 2 + + 2md cos θ = 0 . ∂r r sin2 θ ∂θ Èç ýòîé çàïèñè âèäíî, ÷òî ïåðåìåííàÿ θ îòäåëÿåòñÿ, ïîýòîìó ìû ïîëàãàåì S 0 = S3 (θ) + S4 (r) è ïîëó÷àåì óðàâíåíèÿ µ ¶2 C22 dS3 + + 2md cos θ = C3 , sin2 θ dθ µ ¶2 dS4 C3 2mC1 + + 2 = 0. dr r Èõ ðåøåíèÿ èìåþò âèä Zθ r C22 S3 = ± C3 − 2md cos θ − dθ , sin2 θ θ0 Zr r C3 S4 = ± −2mC1 − dr . r2 r0 Èòàê, ìû íàøëè ðåøåíèå óðàâíåíèÿ Ãàìèëüòîíà-ßêîáè â âèäå Zθ r Zr r C22 C3 S = A + C1 t + C2 φ + ± C3 − 2md cos θ − dθ + ± −2mC1 − dr . (247) sin2 θ r2 θ0 r0 Ýòî ðåøåíèå ñîäåðæèò, ïîìèìî ïðîèçâîëüíîé àääèòèâíîé ïîñòîÿííîé A, ïðîèçâîëüíûå ïîñòîÿííûå C1 , C2 , C3 , θ0 , r0 . Îäíàêî èçìåíåíèå θ0 , r0 ýêâèâàëåíòíî ïåðåîïðåäåëåíèþ A, 80