Кратные интегралы. - 5 стр.

UptoLike

Рубрика: 

§2. ðÒÁ×ÉÌÏ ×ÙÞÉÓÌÅÎÉÑ Ä×ÏÊÎÏÇÏ ÉÎÔÅÇÒÁÌÁ 5
òÅÛÅÎÉÅ.
íÎÏÖÅÓÔ×Ï ÔÏÞÅË (x, y), ÄÌÑ ËÏÔÏÒÙÈ x > 0, ¡ ÜÔÏ ÐÒÁ×ÁÑ ÐÏÌÕÐÌÏÓËÏÓÔØ.
íÎÏÖÅÓÔ×Ï ÔÏÞÅË (x, y), ÄÌÑ ËÏÔÏÒÙÈ y > x
2
, ¡ ÜÔÏ ÏÂÌÁÓÔØ, ÌÅÖÁÝÁÑ ÎÁÄ
ÐÁÒÁÂÏÌÏÊ; ÍÎÏÖÅÓÔ×Ï ÔÏÞÅË (x, y), ÄÌÑ ËÏÔÏÒÙÈ y 6 2 x
2
, ¡ ÜÔÏ ÏÂÌÁÓÔØ,
ÌÅÖÁÝÁÑ ÐÏÄ ÐÁÒÁÂÏÌÏÊ y = 2 x
2
.
íÎÏÖÅÓÔ×Ï D ÉÚÏÂÒÁÖÅÎÏ ÎÁ ÒÉÓÕÎËÅ, ÏÎÏ ÐÒÅÄÓÔÁ×ÌÑÅÔ ÐÅÒÅÓÅÞÅÎÉÅ ÜÔÉÈ
ÔÒÅÈ ÍÎÏÖÅÓÔ×, Ô.Å. ÓÏÓÔÏÉÔ ÉÚ ÔÏÞÅË, ÐÒÉÎÁÄÌÅÖÁÝÉÈ ËÁÖÄÏÍÕ ÉÚ ÎÉÈ.
ä×Å ÐÁÒÁÂÏÌÙ ÐÅÒÅÓÅËÁÀÔÓÑ × ÔÏÞËÁÈ, ÇÄÅ 2 x
2
= x
2
, Ô.Å. ÐÒÉ 2x
2
= 2,
ÔÏÞËÁ ÐÅÒÅÓÅÞÅÎÉÑ, ÐÒÉÎÁÄÌÅÖÁÝÁÑ ÐÒÁ×ÏÊ ÐÏÌÕÐÌÏÓËÏÓÔÉ, ÉÍÅÅÔ ËÏÏÒÄÉ-
ÎÁÔÙ (1, 1). äÌÑ ÔÏÞÅË ÏÂÌÁÓÔÉ D ÁÂÓÃÉÓÓÁ x ÉÚÍÅÎÑÅÔÓÑ ÏÔ 0 ÄÏ 1. ÷ÅÒÔÉ-
ËÁÌØÎÁÑ ÐÒÑÍÁÑ ÐÒÉ ÐÏÓÔÏÑÎÎÏÍ x ÐÅÒÅÓÅËÁÅÔ D ÐÏ ÏÔÒÅÚËÕ, ËÏÎÃÙ ËÏÔÏÒÏÇÏ
ÐÒÉÎÁÄÌÅÖÁÔ ËÒÉ×ÙÍ y = x
2
É y = 2 x
2
.
óÌÅÄÏ×ÁÔÅÌØÎÏ,
ZZ
D
xy dx dy =
1
Z
0
dx
2x
2
Z
x
2
xy dy =
1
Z
0
x
y
2
2
y=2x
2
y=x
2
dx =
=
1
Z
0
x
1
2
(2 x
2
)
2
x
4
dx =
1
Z
0
2x
1
2
2x
5
2
dx =
4
3
x
3
2
4
7
x
7
2
1
0
=
16
21
.
óÁÍÏÓÔÏÑÔÅÌØÎÏ ×ÙÞÉÓÌÉÔÅ ÉÎÔÅÇÒÁÌ, ÉÎÔÅÇÒÉÒÕÑ ÓÎÁÞÁÌÁ ÐÏ x, Á ÚÁÔÅÍ ÐÏ
y.
äÌÑ ÎÅËÏÔÏÒÙÈ ÏÂÌÁÓÔÅÊ Ä×ÏÊÎÏÊ ÉÎÔÅÇÒÁÌ ÕÄÏÂÎÅÅ ×ÙÞÉÓÌÑÔØ, ÐÏÌØÚÕÑÓØ
ÐÏÌÑÒÎÙÍÉ ËÏÏÒÄÉÎÁÔÁÍÉ
x = r cos ϕ,
y = r sin ϕ.
§2. ðÒÁ×ÉÌÏ ×ÙÞÉÓÌÅÎÉÑ Ä×ÏÊÎÏÇÏ ÉÎÔÅÇÒÁÌÁ                                                                5

òÅÛÅÎÉÅ.
  íÎÏÖÅÓÔ×Ï ÔÏÞÅË (x, y), ÄÌÑ ËÏÔÏÒÙÈ x > 0, ¡ ÜÔÏ ÐÒÁ×ÁÑ ÐÏÌÕÐÌÏÓËÏÓÔØ.
íÎÏÖÅÓÔ×Ï ÔÏÞÅË (x, y), ÄÌÑ ËÏÔÏÒÙÈ y > x2, ¡ ÜÔÏ ÏÂÌÁÓÔØ, ÌÅÖÁÝÁÑ ÎÁÄ
ÐÁÒÁÂÏÌÏÊ; ÍÎÏÖÅÓÔ×Ï ÔÏÞÅË (x, y), ÄÌÑ ËÏÔÏÒÙÈ y 6 2 − x2 , ¡ ÜÔÏ ÏÂÌÁÓÔØ,
ÌÅÖÁÝÁÑ ÐÏÄ ÐÁÒÁÂÏÌÏÊ y = 2 − x2.
  íÎÏÖÅÓÔ×Ï D ÉÚÏÂÒÁÖÅÎÏ ÎÁ ÒÉÓÕÎËÅ, ÏÎÏ ÐÒÅÄÓÔÁ×ÌÑÅÔ ÐÅÒÅÓÅÞÅÎÉÅ ÜÔÉÈ
ÔÒÅÈ ÍÎÏÖÅÓÔ×, Ô.Å. ÓÏÓÔÏÉÔ ÉÚ ÔÏÞÅË, ÐÒÉÎÁÄÌÅÖÁÝÉÈ ËÁÖÄÏÍÕ ÉÚ ÎÉÈ.




   ä×Å ÐÁÒÁÂÏÌÙ ÐÅÒÅÓÅËÁÀÔÓÑ × ÔÏÞËÁÈ, ÇÄÅ 2 − x2 = x2, Ô.Å. ÐÒÉ 2x2 = 2,
ÔÏÞËÁ ÐÅÒÅÓÅÞÅÎÉÑ, ÐÒÉÎÁÄÌÅÖÁÝÁÑ ÐÒÁ×ÏÊ ÐÏÌÕÐÌÏÓËÏÓÔÉ, ÉÍÅÅÔ ËÏÏÒÄÉ-
ÎÁÔÙ (1, 1). äÌÑ ÔÏÞÅË ÏÂÌÁÓÔÉ D ÁÂÓÃÉÓÓÁ x ÉÚÍÅÎÑÅÔÓÑ ÏÔ 0 ÄÏ 1. ÷ÅÒÔÉ-
ËÁÌØÎÁÑ ÐÒÑÍÁÑ ÐÒÉ ÐÏÓÔÏÑÎÎÏÍ x ÐÅÒÅÓÅËÁÅÔ D ÐÏ ÏÔÒÅÚËÕ, ËÏÎÃÙ ËÏÔÏÒÏÇÏ
ÐÒÉÎÁÄÌÅÖÁÔ ËÒÉ×ÙÍ y = x2 É y = 2 − x2.
   óÌÅÄÏ×ÁÔÅÌØÎÏ,
                               Z1        Z 2
                                         2−x                    Z1               2
                 √                                √                  √ y 2 y=2−x
            ZZ                                                           
                  xy dx dy =        dx                xy dy =         x            dx =
                                                                         2 y=x2
             D                 0         x2                     0

      Z1                                  Z1                                            1
           √ 1
                                                                            
                                                        1       5
                                                                            4 3 4 7              16
            x (2 − x2)2 − x4 dx =
                            
  =                                               2x − 2x
                                                        2       2       dx = x 2 − x 2        =      .
             2                                                               3    7       0       21
      0                                       0
óÁÍÏÓÔÏÑÔÅÌØÎÏ ×ÙÞÉÓÌÉÔÅ ÉÎÔÅÇÒÁÌ, ÉÎÔÅÇÒÉÒÕÑ ÓÎÁÞÁÌÁ ÐÏ x, Á ÚÁÔÅÍ ÐÏ
y.

  äÌÑ ÎÅËÏÔÏÒÙÈ ÏÂÌÁÓÔÅÊ Ä×ÏÊÎÏÊ ÉÎÔÅÇÒÁÌ ÕÄÏÂÎÅÅ ×ÙÞÉÓÌÑÔØ, ÐÏÌØÚÕÑÓØ
ÐÏÌÑÒÎÙÍÉ ËÏÏÒÄÉÎÁÔÁÍÉ
                            
                              x = r cos ϕ,
                              y = r sin ϕ.