ВУЗ:
Рубрика:
§1. ëÒÉ×ÏÌÉÎÅÊÎÙÅ ÉÎÔÅÇÒÁÌÙ ×ÔÏÒÏÇÏ ÒÏÄÁ 3
ëÒÉ×ÏÌÉÎÅÊÎÙÊ ÉÎÔÅÇÒÁÌ 2-ÇÏ ÒÏÄÁ (2) ×ÙÞÉÓÌÑÅÔÓÑ ÐÏ ÆÏÒÍÕÌÅ
(3)
Z
AB
P (x, y) dx + Q(x, y) dy =
x
B
Z
x
A
[P (x, f(x)) + Q(x, f(x))y
0
] dx.
åÓÌÉ ËÒÉ×ÁÑ l ÚÁÄÁÎÁ ÐÁÒÁÍÅÔÒÉÞÅÓËÉÍÉ ÕÒÁ×ÎÅÎÉÑÍÉ x = ϕ(t), y = ψ(t),
ÇÄÅ t
1
6 t 6 t
2
, ÔÏ ÉÍÅÅÍ
(4)
Z
^AB
P (x, y) dx + Q(x, y) dy =
t
2
Z
t
1
(P [ϕ(t), ψ(t)] ϕ
0
(t) + Q [ϕ(t), ψ(t)] ψ
0
(t)) dt.
áÎÁÌÏÇÉÞÎÁÑ ÆÏÒÍÕÌÁ ÉÍÅÅÔ ÍÅÓÔÏ ÄÌÑ ËÒÉ×ÏÌÉÎÅÊÎÏÇÏ ÉÎÔÅÇÒÁÌÁ 2-ÇÏ
ÒÏÄÁ ÐÏ ÐÒÏÓÔÒÁÎÓÔ×ÅÎÎÏÊ ËÒÉ×ÏÊ l. åÓÌÉ ËÒÉ×ÁÑ l ÚÁÄÁÎÁ ÕÒÁ×ÎÅÎÉÑÍÉ x =
x(t), y = y(t), z = z(t), ÇÄÅ t
1
6 t 6 t
2
, ÔÏ
(5)
Z
^AB
P (x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz =
=
t
2
Z
t
1
(P [x(t), y(t), z(t)] x
0
(t)+Q [x(t), y(t), z(t)] y
0
(t)+R [x(t), y(t), z(t)] z
0
(t)) dt
ðÒÉÍÅÒ 1. ÷ÙÞÉÓÌÉÔØ ËÒÉ×ÏÌÉÎÅÊÎÙÊ ÉÎÔÅÇÒÁÌ
Z
l
x dy − y dx,
×ÚÑÔÙÊ ÐÏ ÏËÒÕÖÎÏÓÔÉ ÒÁÄÉÕÓÁ R Ó ÃÅÎÔÒÏÍ × ÎÁÞÁÌÅ ËÏÏÒÄÉÎÁÔ, ËÏÔÏÒÁÑ
ÏÂÈÏÄÉÔÓÑ ÐÒÏÔÉ× ÞÁÓÏ×ÏÊ ÓÔÒÅÌËÉ.
òÅÛÅÎÉÅ.
ðÁÒÁÍÅÔÒÉÚÁÃÉÑ ÏËÒÕÖÎÏÓÔÉ ÄÁÅÔÓÑ ÆÏÒÍÕÌÁÍÉ
x = R cos t
y = R sin t
, 0 6 t 6 2π.
Z
l
x dy − y dx =
2π
Z
0
[R cos t · R cos t − R sin t (−R sin t)] dt = 2πR
2
.
§1. ëÒÉ×ÏÌÉÎÅÊÎÙÅ ÉÎÔÅÇÒÁÌÙ ×ÔÏÒÏÇÏ ÒÏÄÁ 3 ëÒÉ×ÏÌÉÎÅÊÎÙÊ ÉÎÔÅÇÒÁÌ 2-ÇÏ ÒÏÄÁ (2) ×ÙÞÉÓÌÑÅÔÓÑ ÐÏ ÆÏÒÍÕÌÅ Z ZxB (3) P (x, y) dx + Q(x, y) dy = [P (x, f (x)) + Q(x, f (x))y 0] dx. AB xA åÓÌÉ ËÒÉ×ÁÑ l ÚÁÄÁÎÁ ÐÁÒÁÍÅÔÒÉÞÅÓËÉÍÉ ÕÒÁ×ÎÅÎÉÑÍÉ x = ϕ(t), y = ψ(t), ÇÄÅ t1 6 t 6 t2 , ÔÏ ÉÍÅÅÍ (4) Z Zt2 P (x, y) dx + Q(x, y) dy = (P [ϕ(t), ψ(t)] ϕ0(t) + Q [ϕ(t), ψ(t)] ψ 0 (t)) dt. ^AB t1 áÎÁÌÏÇÉÞÎÁÑ ÆÏÒÍÕÌÁ ÉÍÅÅÔ ÍÅÓÔÏ ÄÌÑ ËÒÉ×ÏÌÉÎÅÊÎÏÇÏ ÉÎÔÅÇÒÁÌÁ 2-ÇÏ ÒÏÄÁ ÐÏ ÐÒÏÓÔÒÁÎÓÔ×ÅÎÎÏÊ ËÒÉ×ÏÊ l. åÓÌÉ ËÒÉ×ÁÑ l ÚÁÄÁÎÁ ÕÒÁ×ÎÅÎÉÑÍÉ x = x(t), y = y(t), z = z(t), ÇÄÅ t1 6 t 6 t2 , ÔÏ (5) Z P (x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz = ^AB Zt2 = (P [x(t), y(t), z(t)] x0(t)+Q [x(t), y(t), z(t)] y 0 (t)+R [x(t), y(t), z(t)] z 0 (t)) dt t1 ðÒÉÍÅÒ 1. ÷ÙÞÉÓÌÉÔØ ËÒÉ×ÏÌÉÎÅÊÎÙÊ ÉÎÔÅÇÒÁÌ Z x dy − y dx, l ×ÚÑÔÙÊ ÐÏ ÏËÒÕÖÎÏÓÔÉ ÒÁÄÉÕÓÁ R Ó ÃÅÎÔÒÏÍ × ÎÁÞÁÌÅ ËÏÏÒÄÉÎÁÔ, ËÏÔÏÒÁÑ ÏÂÈÏÄÉÔÓÑ ÐÒÏÔÉ× ÞÁÓÏ×ÏÊ ÓÔÒÅÌËÉ. òÅÛÅÎÉÅ. ðÁÒÁÍÅÔÒÉÚÁÃÉÑ ÏËÒÕÖÎÏÓÔÉ ÄÁÅÔÓÑ ÆÏÒÍÕÌÁÍÉ x = R cos t , 0 6 t 6 2π. y = R sin t Z Z2π x dy − y dx = [R cos t · R cos t − R sin t (−R sin t)] dt = 2πR2 . l 0