ВУЗ:
Рубрика:
4 §1. ëÒÉ×ÏÌÉÎÅÊÎÙÅ ÉÎÔÅÇÒÁÌÙ ×ÔÏÒÏÇÏ ÒÏÄÁ
ðÒÉÍÅÒ 2. ÷ÙÞÉÓÌÉÔØ ËÒÉ×ÏÌÉÎÅÊÎÙÊ ÉÎÔÅÇÒÁÌ
Z
^AB
(xy − 1) dx + x
2
y dy
ÏÔ ÔÏÞËÉ A(1, 2) ÄÏ ÔÏÞËÉ B(2, 4) ÐÏ ÐÒÑÍÏÊ AB.
òÅÛÅÎÉÅ.
óÏÓÔÁ×ÉÍ ÕÒÁ×ÎÅÎÉÅ ÐÒÑÍÏÊ AB:
x − x
A
x
B
− x
A
=
y − y
A
y
B
− y
A
=⇒
x − 1
1
=
y − 2
2
=⇒ y = 2x.
óÏÇÌÁÓÎÏ ÆÏÒÍÕÌÅ (3) É, Ô.Ë. dy = y
0
dx = 2 dx,
Z
^AB
(x · 2x − 1) dx + x
2
· 2x · 2 dx =
2
Z
1
2x
2
− 1 + 4x
3
dx =
=
2
3
x
3
− x + x
4
2
1
=
56
3
.
ðÒÉÍÅÒ 3. äÁÎÙ ÔÏÞËÉ O(0, 0, 0) É B(−2, 4, 5). ÷ÙÞÉÓÌÉÔØ ËÒÉ×ÏÌÉÎÅÊ-
ÎÙÊ ÉÎÔÅÇÒÁÌ
Z
xy
2
dx + yz
2
dy − zx
2
dz
ÐÏ ÐÒÑÍÏÊ OB.
òÅÛÅÎÉÅ.
óÏÓÔÁ×ÉÍ ÕÒÁ×ÎÅÎÉÑ ÐÒÑÍÏÊ OB
x − x
1
x
2
− x
1
=
y − y
1
y
2
− y
1
=
z − z
1
z
2
− z
1
=⇒
x
−2
=
y
4
=
z
5
.
ðÁÒÁÍÅÔÒÉÚÕÑ ÜÔÉ ÕÒÁ×ÎÅÎÉÑ, ÐÏÌÕÞÉÍ
x
−2
=
y
4
=
z
5
= t =⇒ x = −2t, y = 4t, z = 5t, 0 6 t 6 1.
äÁÌÅÅ, ×ÙÞÉÓÌÑÑ ÄÁÎÎÙÊ ÉÎÔÅÇÒÁÌ ÐÏ (5), ÐÏÌÕÞÉÍ
Z
^AB
xy
2
dx + yz
2
dy − zx
2
dz =
1
Z
0
364t
3
dt = 91.
4 §1. ëÒÉ×ÏÌÉÎÅÊÎÙÅ ÉÎÔÅÇÒÁÌÙ ×ÔÏÒÏÇÏ ÒÏÄÁ
ðÒÉÍÅÒ 2. ÷ÙÞÉÓÌÉÔØ ËÒÉ×ÏÌÉÎÅÊÎÙÊ ÉÎÔÅÇÒÁÌ
Z
(xy − 1) dx + x2y dy
^AB
ÏÔ ÔÏÞËÉ A(1, 2) ÄÏ ÔÏÞËÉ B(2, 4) ÐÏ ÐÒÑÍÏÊ AB.
òÅÛÅÎÉÅ.
óÏÓÔÁ×ÉÍ ÕÒÁ×ÎÅÎÉÅ ÐÒÑÍÏÊ AB:
x − xA y − yA x−1 y−2
= =⇒ = =⇒ y = 2x.
xB − x A yB − y A 1 2
óÏÇÌÁÓÎÏ ÆÏÒÍÕÌÅ (3) É, Ô.Ë. dy = y 0 dx = 2 dx,
Z Z2
(x · 2x − 1) dx + x2 · 2x · 2 dx = 2x2 − 1 + 4x3 dx =
^AB 1
2
2 3 56
= x − x + x4 = .
3 1 3
ðÒÉÍÅÒ 3. äÁÎÙ ÔÏÞËÉ O(0, 0, 0) É B(−2, 4, 5). ÷ÙÞÉÓÌÉÔØ ËÒÉ×ÏÌÉÎÅÊ-
ÎÙÊ ÉÎÔÅÇÒÁÌ Z
xy 2 dx + yz 2 dy − zx2 dz
ÐÏ ÐÒÑÍÏÊ OB.
òÅÛÅÎÉÅ.
óÏÓÔÁ×ÉÍ ÕÒÁ×ÎÅÎÉÑ ÐÒÑÍÏÊ OB
x − x1 y − y1 z − z1 x y z
= = =⇒ = = .
x2 − x 1 y2 − y 1 z2 − z 1 −2 4 5
ðÁÒÁÍÅÔÒÉÚÕÑ ÜÔÉ ÕÒÁ×ÎÅÎÉÑ, ÐÏÌÕÞÉÍ
x y z
= = = t =⇒ x = −2t, y = 4t, z = 5t, 0 6 t 6 1.
−2 4 5
äÁÌÅÅ, ×ÙÞÉÓÌÑÑ ÄÁÎÎÙÊ ÉÎÔÅÇÒÁÌ ÐÏ (5), ÐÏÌÕÞÉÍ
Z Z1
xy 2 dx + yz 2 dy − zx2 dz = 364t3 dt = 91.
^AB 0
Страницы
- « первая
- ‹ предыдущая
- …
- 2
- 3
- 4
- 5
- 6
- …
- следующая ›
- последняя »
