ВУЗ:
Составители:
Рубрика:
21
26
345
1
1434 1
.
0
24 2 3 2 5 6 720
xx
xxx
жц
ч
з
=-+-+=
ч
з
ч
з
иш
5. Криволинейные системы координатв трехмерном
пространстве
1. Цилиндрическая система координат
Цилиндрические координаты точки Р(ρ,φ,z) – это полярные
координаты ρ, φ проекции этой точки на плоскость Оху и апликата данной
точки z (рис.10).
Рис.10 Рис.11
Формулы перехода от цилиндрических координат к декартовым
можно задать следующим образом:
x = ρ cosφ, y = ρ sinφ, z = z. (24)
2.
Сферическая система координат
В сферических координатах положение точки в пространстве
определяется линейной координатой ρ – расстоянием от точки до начала
декартовой системы координат (или полюса сферической системы), φ –
полярным углом между положительной полуосью Ох и проекцией точки
2 6 ц1 1ж зз x - 4 x 3 + 3 x 4 - 4 x 5 + x ч ч = 1 . = ч 0 720 24 зи 2 3 2 5 6 ш 5. Криволинейные системы координатв трехмерном пространстве 1. Цилиндрическая система координат Цилиндрические координаты точки Р(ρ,φ,z) – это полярные координаты ρ, φ проекции этой точки на плоскость Оху и апликата данной точки z (рис.10). Рис.10 Рис.11 Формулы перехода от цилиндрических координат к декартовым можно задать следующим образом: x = ρ cosφ, y = ρ sinφ, z = z. (24) 2. Сферическая система координат В сферических координатах положение точки в пространстве определяется линейной координатой ρ – расстоянием от точки до начала декартовой системы координат (или полюса сферической системы), φ – полярным углом между положительной полуосью Ох и проекцией точки 21
Страницы
- « первая
- ‹ предыдущая
- …
- 19
- 20
- 21
- 22
- 23
- …
- следующая ›
- последняя »