Операционное исчисление. - 3 стр.

UptoLike

§2. ó×ÏÊÓÔ×Á ÐÒÅÏÂÒÁÚÏ×ÁÎÉÑ ìÁÐÌÁÓÁ 3
9) f (t) = e
t
2
.
10) f (t) = e
t
2
.
11) f (t) =
1
t
2
+ 2
.
ðÏÌØÚÕÑÓØ ÏÐÒÅÄÅÌÅÎÉÅÍ, ÎÁÊÔÉ ÉÚÏÂÒÁÖÅÎÉÑ ÓÌÅÄÕÀÝÉÈ ÆÕÎËÃÉÊ:
12) f (t) = t.
13) f (t) = sin 3t.
14) f (t) = te
t
.
15) íÏÖÅÔ ÌÉ ÆÕÎËÃÉÑ ϕ(p) =
1
cos p
ÓÌÕÖÉÔØ ÉÚÏÂÒÁÖÅÎÉÅÍ ÎÅËÏÔÏÒÏÇÏ
ÏÒÉÇÉÎÁÌÁ?
§2. ó×ÏÊÓÔ×Á ÐÒÅÏÂÒÁÚÏ×ÁÎÉÑ ìÁÐÌÁÓÁ
2.1. ó×ÏÊÓÔ×Ï ÌÉÎÅÊÎÏÓÔÉ
äÌÑ ÌÀÂÙÈ ËÏÍÐÌÅËÓÎÙÈ ÐÏÓÔÏÑÎÙÈ α É β
αf (t) + βg(t) αF (p) + βG(p),
ÇÄÅ
f(t) F (p), g(t) G(p).
2.2. ôÅÏÒÅÍÁ ÐÏÄÏÂÉÑ
äÌÑ ÌÀÂÏÇÏ ÐÏÓÔÏÑÎÎÏÇÏ α > 0
f(αt)
1
α
F
p
α
.
2.3. äÉÆÆÅÒÅÎÃÉÒÏ×ÁÎÉÅ ÏÒÉÇÉÎÁÌÁ
åÓÌÉ ÆÕÎËÃÉÉ f(t), f
0
(t), f
00
(t), . . . , f
(n)
(t) Ñ×ÌÑÀÔÓÑ ÏÒÉÇÉÎÁÌÁÍÉ, ÐÒÉÞÅÍ
f(t) F (p), ÔÏ
f
0
(t) pF (p) f (0),
f
00
(t) p
2
F (p) pf (0) f
0
(0),
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
f
(n)
(t) p
n
F (p) p
n1
f(0) p
n2
f
0
(0) . . . pf
(n2)
(0) f
(n1)
(0),
ÇÄÅ ÐÏÄ f
(k)
(0), (k = 1, 2, . . . , n 1) ÐÏÎÉÍÁÅÔÓÑ lim
t0+
f
(k)
(t).
§2. ó×ÏÊÓÔ×Á ÐÒÅÏÂÒÁÚÏ×ÁÎÉÑ ìÁÐÌÁÓÁ                                                            3
                     2
  9) f (t) = et .
                   2
  10) f (t) = e−t .
                  1
  11) f (t) = 2       .
               t +2
ðÏÌØÚÕÑÓØ ÏÐÒÅÄÅÌÅÎÉÅÍ, ÎÁÊÔÉ ÉÚÏÂÒÁÖÅÎÉÑ ÓÌÅÄÕÀÝÉÈ ÆÕÎËÃÉÊ:
  12) f (t) = t.
  13) f (t) = sin 3t.
  14) f (t) = tet .
                                  1
  15) íÏÖÅÔ ÌÉ ÆÕÎËÃÉÑ ϕ(p) =         ÓÌÕÖÉÔØ ÉÚÏÂÒÁÖÅÎÉÅÍ ÎÅËÏÔÏÒÏÇÏ
                                cos p
ÏÒÉÇÉÎÁÌÁ?


   §2. ó×ÏÊÓÔ×Á ÐÒÅÏÂÒÁÚÏ×ÁÎÉÑ ìÁÐÌÁÓÁ
2.1. ó×ÏÊÓÔ×Ï ÌÉÎÅÊÎÏÓÔÉ

äÌÑ ÌÀÂÙÈ ËÏÍÐÌÅËÓÎÙÈ ÐÏÓÔÏÑÎÙÈ α É β
                               αf (t) + βg(t) → αF (p) + βG(p),
ÇÄÅ
                                  f (t) → F (p), g(t) → G(p).

2.2. ôÅÏÒÅÍÁ ÐÏÄÏÂÉÑ

äÌÑ ÌÀÂÏÇÏ ÐÏÓÔÏÑÎÎÏÇÏ α > 0
                                               1 p
                                       f (αt) → F    .
                                               α  α

2.3. äÉÆÆÅÒÅÎÃÉÒÏ×ÁÎÉÅ ÏÒÉÇÉÎÁÌÁ

åÓÌÉ ÆÕÎËÃÉÉ f (t), f 0(t), f 00(t), . . . , f (n)(t) Ñ×ÌÑÀÔÓÑ ÏÒÉÇÉÎÁÌÁÍÉ, ÐÒÉÞÅÍ
f (t) → F (p), ÔÏ
   f 0 (t)     →      pF (p) − f (0),
   f 00(t)     →      p2F (p) − pf (0) − f 0 (0),
   . . . . .   . .   . . . . . . . . . . . . . . . . . . . . . . . . . . .
   f (n) (t)   →      pn F (p) − pn−1f (0) − pn−2f 0 (0) − . . . − pf (n−2)(0) − f (n−1)(0),
ÇÄÅ ÐÏÄ f (k) (0), (k = 1, 2, . . . , n − 1) ÐÏÎÉÍÁÅÔÓÑ lim f (k) (t).
                                                             t→0+