Задачи по линейной алгебре и геометрии. Панов А.Н. - 32 стр.

UptoLike

Составители: 

Рубрика: 

8.9. y = (3, 1, 1, 2), z = (2, 1, 1, 4).
8.10. y = (5, 5, 2, 1), z = (2, 1, 1, 3).
9.1.
3 6
1 3
. 9.2.
36 37 15
30 30 14
26 27 9
. 9.3.
4 2 2
2 1 1
1 2 1
.
9.4. a)
128 313 454
36 117 145
61 197 245
, b)
5 5 3
5 7 2
3 6 0
.
9.5.φ
(y) = (y, b)a. 9.6. φ
(x) = φ.
9.7. φ
–проектирование на биссектрису второй и четвёртой четверти па-
раллельно оси 0y. 9.8. ψ
(f) = x
2
f
000
.
9.9. D
(f) = f
0
, ψ
(f) = x
3
f
00
+ 6x
2
f
0
+ 6xf.
9.10. φ
(X) = A
t
X.
10.1. a diag(7, 3), f
1
=
1
10
(1, 3), f
2
=
1
10
(3, 1),
b) diag(0, 9, 6), f
1
=
1
18
(4, 1, 1), f
2
=
1
3
(1, 2, 2), f
3
=
1
2
(0, 1, 1),
c) diag(12, 2, 2), f
1
=
1
14
(1, 2, 3), f
2
=
1
10
(3, 0, 1), f
3
=
1
35
(1, 5, 3),
d) diag(1, 4, 4), f
1
=
1
10
(2
2, 1, 1), f
2
=
1
2
(0, 1, 1), f
3
=
1
5
(1,
2,
2),
e) diag(9, 3, 3), f
1
=
1
6
(1, 1, 2), f
2
=
1
2
(1, 1, 0), f
3
=
1
3
(1, 1, 1),
f) diag(15, 3, 3), f
1
=
1
18
(1, 1, 4), f
2
=
1
2
(1, 1, 0), f
3
=
1
3
(2, 2, 1)
g) diag(1, 1, 1, 1), f
1
=
1
2
(1, 0, 0, 1), f
2
=
1
2
(0, 1, 1, 0), f
3
=
1
2
(1, 0, 0, 1),
f
4
=
1
2
(0, 1, 1, 0),
h) diag(3, 1, 1, 1),
f
1
=
1
2
(1, 1, 1, 1),
f
2
=
1
2
(1, 1, 0, 0),
f
3
=
1
5
(1, 1, 2, 0),
f
4
=
1
10
(1, 1, 1 3).
k) diag(5, 1), f
1
=
1
3
(1 + i, 1), f
2
=
1
6
(1 + i, 2),
m) diag(2, 4), f
1
=
1
2
(1, i), f
2
=
1
2
(1, i),
n) diag(2, 8), f
1
=
1
6
(2 i, 1), f
2
=
1
6
(1, 2 + i).
10.2. k(k + 1).
11.1. a)
e
0
0 e
, e
1
= (
1
2
,
1
2
), e
2
= (
1
2
,
1
2
).
32