ВУЗ:
Рубрика:
10 §2. äÏÓÔÁÔÏÞÎÙÅ ÐÒÉÚÎÁËÉ ÓÈÏÄÉÍÏÓÔÉ ÐÏÌÏÖÉÔÅÌØÎÙÈ ÒÑÄÏ×
òÅÛÅÎÉÅ: ðÒÉÍÅÎÉÍ ÐÒÉÚÎÁË äÁÌÁÍÂÅÒÁ.
a
n
=
5
n
n(n + 1)
, a
n+1
=
5
n+1
(n + 1)(n + 2)
,
q = lim
n→∞
a
n+1
a
n
= lim
n→∞
5
n+1
n(n + 1)
(n + 1)(n + 2)5
n
= lim
n→∞
5n
n + 2
= 5.
ôÁË ËÁË q = 5 > 1, ÔÏ ÐÏ ÐÒÉÚÎÁËÕ äÁÌÁÍÂÅÒÁ ÉÓÓÌÅÄÕÅÍÙÊ ÒÑÄ ÒÁÓÈÏÄÉÔÓÑ.
ðÒÉÍÅÒ 9. éÓÓÌÅÄÏ×ÁÔØ ÎÁ ÓÈÏÄÉÍÏÓÔØ ÒÑÄ
1 +
2
2
2!
+
3
3
3!
+ . . . +
n
n
n!
+ . . .
òÅÛÅÎÉÅ: ðÒÉÍÅÎÉÍ ÐÒÉÚÎÁË äÁÌÁÍÂÅÒÁ.
a
n
=
n
n
n!
, a
n+1
=
(n + 1)
n+1
(n + 1)!
,
q = lim
n→∞
a
n+1
a
n
=
(n + 1)
n+1
n!
(n + 1)!n
n
=
(n + 1)
n
(n + 1)n!
n!(n + 1)n
n
=
= lim
n→∞
(n + 1)
n
n
n
= lim
n→∞
n + 1
n
n
= lim
n→∞
1 +
1
n
n
= e.
ôÁË ËÁË q = e > 1, ÔÏ ÐÏ ÐÒÉÚÎÁËÕ äÁÌÁÍÂÅÒÁ ÉÓÓÌÅÄÕÅÍÙÊ ÒÑÄ ÒÁÓÈÏÄÉÔÓÑ.
2.4. ðÒÉÚÎÁË ÓÈÏÄÉÍÏÓÔÉ ëÏÛÉ
åÓÌÉ ÄÌÑ ÒÑÄÁ Ó ÎÅÏÔÒÉÃÁÔÅÌØÎÙÍÉ ÞÌÅÎÁÍÉ
(5)
∞
X
n=1
a
n
= a
1
+ a
2
+ a
3
+ . . . + a
n
+ . . . , a
n
> 0,
ÓÕÝÅÓÔ×ÕÅÔ ÐÒÅÄÅÌ
lim
n→∞
n
√
a
n
= q,
ÔÏ
1) ÐÒÉ q < 1 ÒÑÄ (5) ÓÈÏÄÉÔÓÑ,
2) ÐÒÉ q > 1 ÉÌÉ q = +∞ ÒÑÄ (5) ÒÁÓÈÏÄÉÔÓÑ,
3) ÐÒÉ q = 1 Ï ÓÈÏÄÉÍÏÓÔÉ ÉÌÉ ÒÁÓÈÏÄÉÍÏÓÔÉ ÒÑÄÁ (5) ÎÉÞÅÇÏ ÓËÁÚÁÔØ
ÎÅÌØÚÑ É × ÜÔÏÍ ÓÌÕÞÁÅ ÎÁÄÏ ÐÒÉÍÅÎÉÔØ ÄÒÕÇÏÊ ÐÒÉÚÎÁË ÓÈÏÄÉÍÏÓÔÉ.
ðÒÉÍÅÒ 10. éÓÓÌÅÄÏ×ÁÔØ ÎÁ ÓÈÏÄÉÍÏÓÔØ ÒÑÄ
∞
X
n=1
1
(ln n)
n
.
10 §2. äÏÓÔÁÔÏÞÎÙÅ ÐÒÉÚÎÁËÉ ÓÈÏÄÉÍÏÓÔÉ ÐÏÌÏÖÉÔÅÌØÎÙÈ ÒÑÄÏ× òÅÛÅÎÉÅ: ðÒÉÍÅÎÉÍ ÐÒÉÚÎÁË äÁÌÁÍÂÅÒÁ. 5n 5n+1 an = , an+1 = , n(n + 1) (n + 1)(n + 2) an+1 5n+1n(n + 1) 5n q = lim = lim = lim = 5. n→∞ an n→∞ (n + 1)(n + 2)5n n→∞ n + 2 ôÁË ËÁË q = 5 > 1, ÔÏ ÐÏ ÐÒÉÚÎÁËÕ äÁÌÁÍÂÅÒÁ ÉÓÓÌÅÄÕÅÍÙÊ ÒÑÄ ÒÁÓÈÏÄÉÔÓÑ. ðÒÉÍÅÒ 9. éÓÓÌÅÄÏ×ÁÔØ ÎÁ ÓÈÏÄÉÍÏÓÔØ ÒÑÄ 22 33 nn 1+ + + ...+ + ... 2! 3! n! òÅÛÅÎÉÅ: ðÒÉÍÅÎÉÍ ÐÒÉÚÎÁË äÁÌÁÍÂÅÒÁ. nn (n + 1)n+1 an = , an+1 = , n! (n + 1)! an+1 (n + 1)n+1n! (n + 1)n(n + 1)n! q = lim = = = n→∞ an (n + 1)!nn n!(n + 1)nn n n (n + 1)n n+1 1 = lim = lim = lim 1 + = e. n→∞ nn n→∞ n n→∞ n ôÁË ËÁË q = e > 1, ÔÏ ÐÏ ÐÒÉÚÎÁËÕ äÁÌÁÍÂÅÒÁ ÉÓÓÌÅÄÕÅÍÙÊ ÒÑÄ ÒÁÓÈÏÄÉÔÓÑ. 2.4. ðÒÉÚÎÁË ÓÈÏÄÉÍÏÓÔÉ ëÏÛÉ åÓÌÉ ÄÌÑ ÒÑÄÁ Ó ÎÅÏÔÒÉÃÁÔÅÌØÎÙÍÉ ÞÌÅÎÁÍÉ ∞ X (5) an = a 1 + a 2 + a 3 + . . . + a n + . . . , an > 0, n=1 ÓÕÝÅÓÔ×ÕÅÔ ÐÒÅÄÅÌ √ lim n an = q, n→∞ ÔÏ 1) ÐÒÉ q < 1 ÒÑÄ (5) ÓÈÏÄÉÔÓÑ, 2) ÐÒÉ q > 1 ÉÌÉ q = +∞ ÒÑÄ (5) ÒÁÓÈÏÄÉÔÓÑ, 3) ÐÒÉ q = 1 Ï ÓÈÏÄÉÍÏÓÔÉ ÉÌÉ ÒÁÓÈÏÄÉÍÏÓÔÉ ÒÑÄÁ (5) ÎÉÞÅÇÏ ÓËÁÚÁÔØ ÎÅÌØÚÑ É × ÜÔÏÍ ÓÌÕÞÁÅ ÎÁÄÏ ÐÒÉÍÅÎÉÔØ ÄÒÕÇÏÊ ÐÒÉÚÎÁË ÓÈÏÄÉÍÏÓÔÉ. ðÒÉÍÅÒ 10. éÓÓÌÅÄÏ×ÁÔØ ÎÁ ÓÈÏÄÉÍÏÓÔØ ÒÑÄ ∞ X 1 . n=1 (ln n)n
Страницы
- « первая
- ‹ предыдущая
- …
- 8
- 9
- 10
- 11
- 12
- …
- следующая ›
- последняя »