ВУЗ:
Рубрика:
§2. äÏÓÔÁÔÏÞÎÙÅ ÐÒÉÚÎÁËÉ ÓÈÏÄÉÍÏÓÔÉ ÐÏÌÏÖÉÔÅÌØÎÙÈ ÒÑÄÏ× 9
òÅÛÅÎÉÅ: ðÒÉÍÅÎÑÅÍ ×ÔÏÒÏÊ ÐÒÉÚÎÁË ÓÒÁ×ÎÅÎÉÑ.
lim
n→∞
a
n
b
n
= lim
n→∞
ln(1 +
1
n
2
)
1
n
2
= lim
n→∞
n
2
ln
1 +
1
n
2
=
= lim
n→∞
ln
1 +
1
n
2
n
2
= ln
"
lim
n→∞
1 +
1
n
2
n
2
#
= ln e = 1 6= 0
(×ÔÏÒÏÊ ÚÁÍÅÞÁÔÅÌØÎÙÊ ÐÒÅÄÅÌ). óÌÅÄÏ×ÁÔÅÌØÎÏ, ÉÓÓÌÅÄÕÅÍÙÊ ÒÑÄ ÔÁËÖÅ
ÓÈÏÄÉÔÓÑ.
2.3. ðÒÉÚÎÁË ÓÈÏÄÉÍÏÓÔÉ äÁÌÁÍÂÅÒÁ
åÓÌÉ ÄÌÑ ÒÑÄÁ Ó ÐÏÌÏÖÉÔÅÌØÎÙÍÉ ÞÌÅÎÁÍÉ
(4)
∞
X
n=1
a
n
= a
1
+ a
2
+ a
3
+ . . . + a
n
+ . . . , a
n
> 0,
ÓÕÝÅÓÔ×ÕÅÔ ÐÒÅÄÅÌ
lim
n→∞
a
n+1
a
n
= q,
ÔÏ
1) ÐÒÉ q < 1 ÒÑÄ (4) ÓÈÏÄÉÔÓÑ,
2) ÐÒÉ q > 1 ÉÌÉ q = +∞ ÒÑÄ (4) ÒÁÓÈÏÄÉÔÓÑ,
3) ÐÒÉ q = 1 Ï ÓÈÏÄÉÍÏÓÔÉ ÉÌÉ ÒÁÓÈÏÄÉÍÏÓÔÉ ÒÑÄÁ (4) ÎÉÞÅÇÏ ÓËÁÚÁÔØ
ÎÅÌØÚÑ É × ÜÔÏÍ ÓÌÕÞÁÅ ÎÁÄÏ ÐÒÉÍÅÎÉÔØ ÄÒÕÇÏÊ ÐÒÉÚÎÁË ÓÈÏÄÉÍÏÓÔÉ.
ðÒÉÍÅÒ 7. éÓÓÌÅÄÏ×ÁÔØ ÎÁ ÓÈÏÄÉÍÏÓÔØ ÒÑÄ
∞
X
n=1
1
n!
.
òÅÛÅÎÉÅ:
a
n
=
1
n!
, a
n+1
=
1
(n + 1)!
.
ðÒÉÍÅÎÉÍ ÐÒÉÚÎÁË äÁÌÁÍÂÅÒÁ.
q = lim
n→∞
1
(n + 1)!
:
1
n!
= lim
n→∞
n!
(n + 1)!
= lim
n→∞
1
n + 1
= 0.
ôÁË ËÁË q = 0 < 1, ÔÏ ÐÏ ÐÒÉÚÎÁËÕ äÁÌÁÍÂÅÒÁ ÉÓÓÌÅÄÕÅÍÙÊ ÒÑÄ ÓÈÏÄÉÔÓÑ.
ðÒÉÍÅÒ 8. éÓÓÌÅÄÏ×ÁÔØ ÎÁ ÓÈÏÄÉÍÏÓÔØ ÒÑÄ
∞
X
n=1
5
n
n(n + 1)
.
§2. äÏÓÔÁÔÏÞÎÙÅ ÐÒÉÚÎÁËÉ ÓÈÏÄÉÍÏÓÔÉ ÐÏÌÏÖÉÔÅÌØÎÙÈ ÒÑÄÏ× 9 òÅÛÅÎÉÅ: ðÒÉÍÅÎÑÅÍ ×ÔÏÒÏÊ ÐÒÉÚÎÁË ÓÒÁ×ÎÅÎÉÑ. ln(1 + n12 ) an 1 lim = lim 1 = lim n2 ln 1 + 2 = n→∞ bn n→∞ n→∞ n n2 n 2 " n 2 # 1 1 = lim ln 1 + 2 = ln lim 1 + 2 = ln e = 1 6= 0 n→∞ n n→∞ n (×ÔÏÒÏÊ ÚÁÍÅÞÁÔÅÌØÎÙÊ ÐÒÅÄÅÌ). óÌÅÄÏ×ÁÔÅÌØÎÏ, ÉÓÓÌÅÄÕÅÍÙÊ ÒÑÄ ÔÁËÖÅ ÓÈÏÄÉÔÓÑ. 2.3. ðÒÉÚÎÁË ÓÈÏÄÉÍÏÓÔÉ äÁÌÁÍÂÅÒÁ åÓÌÉ ÄÌÑ ÒÑÄÁ Ó ÐÏÌÏÖÉÔÅÌØÎÙÍÉ ÞÌÅÎÁÍÉ X∞ (4) an = a 1 + a 2 + a 3 + . . . + a n + . . . , an > 0, n=1 ÓÕÝÅÓÔ×ÕÅÔ ÐÒÅÄÅÌ an+1 lim = q, n→∞ an ÔÏ 1) ÐÒÉ q < 1 ÒÑÄ (4) ÓÈÏÄÉÔÓÑ, 2) ÐÒÉ q > 1 ÉÌÉ q = +∞ ÒÑÄ (4) ÒÁÓÈÏÄÉÔÓÑ, 3) ÐÒÉ q = 1 Ï ÓÈÏÄÉÍÏÓÔÉ ÉÌÉ ÒÁÓÈÏÄÉÍÏÓÔÉ ÒÑÄÁ (4) ÎÉÞÅÇÏ ÓËÁÚÁÔØ ÎÅÌØÚÑ É × ÜÔÏÍ ÓÌÕÞÁÅ ÎÁÄÏ ÐÒÉÍÅÎÉÔØ ÄÒÕÇÏÊ ÐÒÉÚÎÁË ÓÈÏÄÉÍÏÓÔÉ. ðÒÉÍÅÒ 7. éÓÓÌÅÄÏ×ÁÔØ ÎÁ ÓÈÏÄÉÍÏÓÔØ ÒÑÄ ∞ X 1 . n=1 n! òÅÛÅÎÉÅ: 1 1 , an+1 = an = . n! (n + 1)! ðÒÉÍÅÎÉÍ ÐÒÉÚÎÁË äÁÌÁÍÂÅÒÁ. 1 1 n! 1 q = lim : = lim = lim = 0. n→∞ (n + 1)! n! n→∞ (n + 1)! n→∞ n + 1 ôÁË ËÁË q = 0 < 1, ÔÏ ÐÏ ÐÒÉÚÎÁËÕ äÁÌÁÍÂÅÒÁ ÉÓÓÌÅÄÕÅÍÙÊ ÒÑÄ ÓÈÏÄÉÔÓÑ. ðÒÉÍÅÒ 8. éÓÓÌÅÄÏ×ÁÔØ ÎÁ ÓÈÏÄÉÍÏÓÔØ ÒÑÄ ∞ X 5n . n=1 n(n + 1)
Страницы
- « первая
- ‹ предыдущая
- …
- 7
- 8
- 9
- 10
- 11
- …
- следующая ›
- последняя »