Ряды. - 8 стр.

UptoLike

8 §2. äÏÓÔÁÔÏÞÎÙÅ ÐÒÉÚÎÁËÉ ÓÈÏÄÉÍÏÓÔÉ ÐÏÌÏÖÉÔÅÌØÎÙÈ ÒÑÄÏ×
òÅÛÅÎÉÅ: óÒÁ×ÎÉÍ ÄÁÎÎÙÊ ÒÑÄ Ó ÂÅÓËÏÎÅÞÎÏÊ ÇÅÏÍÅÔÒÉÞÅÓËÏÊ ÐÒÏÇÒÅÓ-
ÓÉÅÊ
1 +
1
5
+
1
5
2
+
1
5
3
+ . . . +
1
5
n
+ . . .
ôÁË ËÁË ÜÔÁ ÐÒÏÇÒÅÓÓÉÑ ÓÈÏÄÉÔÓÑ, Á
1
n·5
n
<
1
5
n
, ÔÏ ÐÏ ÐÅÒ×ÏÍÕ ÐÒÉÚÎÁËÕ ÓÒÁ×-
ÎÅÎÉÑ ÉÓÈÏÄÎÙÊ ÒÑÄ ÓÈÏÄÉÔÓÑ.
2.2. ÷ÔÏÒÏÊ ÐÒÉÚÎÁË ÓÒÁ×ÎÅÎÉÑ
åÓÌÉ ÒÑÄÙ (1) É (2) Ñ×ÌÑÀÔÓÑ ÓÔÒÏÇÏ ÐÏÌÏÖÉÔÅÌØÎÙÍÉ É ÄÌÑ ÞÌÅÎÏ× ÒÑÄÏ×
×ÙÐÏÌÎÑÅÔÓÑ ÕÓÌÏ×ÉÅ
lim
n→∞
a
n
b
n
= k 6= 0,
ÇÄÅ k ËÏÎÅÞÎÏÅ (ÏÔÌÉÞÎÏÅ ÏÔ ÎÕÌÑ) ÞÉÓÌÏ, ÔÏ ÒÑÄÙ (1) É (2) ÌÉÂÏ ÏÂÁ
ÓÈÏÄÑÔÓÑ, ÌÉÂÏ ÏÂÁ ÒÁÓÈÏÄÑÔÓÑ, ÔÏ ÅÓÔØ ÜÔÉ ÒÑÄÙ ÓÈÏÄÑÔÓÑ ÉÌÉ ÒÁÓÈÏÄÑÔÓÑ
ÏÄÎÏ×ÒÅÍÅÎÎÏ.
ðÒÉÍÅÒ 4. éÓÓÌÅÄÏ×ÁÔØ ÓÈÏÄÉÍÏÓÔØ ÒÑÄÁ
sin 1 + sin
1
2
+ sin
1
3
+ . . . + sin
1
n
+ . . .
òÅÛÅÎÉÅ: ïÂÝÉÊ ÞÌÅÎ ÄÁÎÎÏÇÏ ÒÑÄÁ a
n
= sin
1
n
. ïÂÝÉÊ ÞÌÅÎ ÒÁÓÈÏÄÑ-
ÝÅÇÏÓÑ ÇÁÒÍÏÎÉÞÅÓËÏÇÏ ÒÑÄÁ b
n
=
1
n
. ðÒÉÍÅÎÑÅÍ ×ÔÏÒÏÊ ÐÒÉÚÎÁË ÓÒÁ×ÎÅÎÉÑ.
ôÁË ËÁË
lim
n→∞
a
n
b
n
= lim
n→∞
sin
1
n
1
n
= 1 6= 0 (ÐÅÒ×ÙÊ ÚÁÍÅÞÁÔÅÌØÎÙÊ ÐÒÅÄÅÌ),
ÔÏ ÉÓÓÌÅÄÕÅÍÙÊ ÒÑÄ ÒÁÓÈÏÄÉÔÓÑ.
ðÒÉÍÅÒ 5. éÚ×ÅÓÔÎÏ, ÞÔÏ ÞÉÓÌÏ×ÏÊ ÒÑÄ, ÏÂÝÉÊ ÞÌÅÎ ËÏÔÏÒÏÇÏ a
n
=
1
n
2
,
ÓÈÏÄÉÔÓÑ. äÏËÁÚÁÔØ ÓÈÏÄÉÍÏÓÔØ ÒÑÄÁ Ó ÏÂÝÉÍ ÞÌÅÎÏÍ b
n
=
1
n(2n+1)
.
òÅÛÅÎÉÅ: ðÒÉÍÅÎÑÅÍ ×ÔÏÒÏÊ ÐÒÉÚÎÁË ÓÒÁ×ÎÅÎÉÑ.
lim
n→∞
a
n
b
n
= lim
n→∞
1
n
2
1
n(2n+1)
= lim
n→∞
n(2n + 1)
n
2
= 2 6= 0.
óÌÅÄÏ×ÁÔÅÌØÎÏ, ÒÑÄ Ó ÏÂÝÉÍ ÞÌÅÎÏÍ b
n
=
1
n(2n+1)
ÓÈÏÄÉÔÓÑ.
ðÒÉÍÅÒ 6. äÏËÁÚÁÔØ ÓÈÏÄÉÍÏÓÔØ ÒÑÄÁ Ó ÏÂÝÉÍ ÞÌÅÎÏÍ a
n
= ln(1 +
1
n
2
),
ÚÎÁÑ, ÞÔÏ ÒÑÄ Ó ÏÂÝÉÍ ÞÌÅÎÏÍ b
n
=
1
n
2
ÓÈÏÄÉÔÓÑ.
8          §2. äÏÓÔÁÔÏÞÎÙÅ ÐÒÉÚÎÁËÉ ÓÈÏÄÉÍÏÓÔÉ ÐÏÌÏÖÉÔÅÌØÎÙÈ ÒÑÄÏ×

   òÅÛÅÎÉÅ: óÒÁ×ÎÉÍ ÄÁÎÎÙÊ ÒÑÄ Ó ÂÅÓËÏÎÅÞÎÏÊ ÇÅÏÍÅÔÒÉÞÅÓËÏÊ ÐÒÏÇÒÅÓ-
ÓÉÅÊ
                      1  1    1          1
                  1 + + 2 + 3 + ...+ n + ...
                      5 5     5         5
                                           1          1
ôÁË ËÁË ÜÔÁ ÐÒÏÇÒÅÓÓÉÑ ÓÈÏÄÉÔÓÑ, Á        n·5n   <   5n ,   ÔÏ ÐÏ ÐÅÒ×ÏÍÕ ÐÒÉÚÎÁËÕ ÓÒÁ×-
ÎÅÎÉÑ ÉÓÈÏÄÎÙÊ ÒÑÄ ÓÈÏÄÉÔÓÑ.


2.2. ÷ÔÏÒÏÊ ÐÒÉÚÎÁË ÓÒÁ×ÎÅÎÉÑ

åÓÌÉ ÒÑÄÙ (1) É (2) Ñ×ÌÑÀÔÓÑ ÓÔÒÏÇÏ ÐÏÌÏÖÉÔÅÌØÎÙÍÉ É ÄÌÑ ÞÌÅÎÏ× ÒÑÄÏ×
×ÙÐÏÌÎÑÅÔÓÑ ÕÓÌÏ×ÉÅ
                                 an
                             lim    = k 6= 0,
                            n→∞ bn

ÇÄÅ k ËÏÎÅÞÎÏÅ (ÏÔÌÉÞÎÏÅ ÏÔ ÎÕÌÑ) ÞÉÓÌÏ, ÔÏ ÒÑÄÙ (1) É (2) ÌÉÂÏ ÏÂÁ
ÓÈÏÄÑÔÓÑ, ÌÉÂÏ ÏÂÁ ÒÁÓÈÏÄÑÔÓÑ, ÔÏ ÅÓÔØ ÜÔÉ ÒÑÄÙ ÓÈÏÄÑÔÓÑ ÉÌÉ ÒÁÓÈÏÄÑÔÓÑ
ÏÄÎÏ×ÒÅÍÅÎÎÏ.
   ðÒÉÍÅÒ 4. éÓÓÌÅÄÏ×ÁÔØ ÓÈÏÄÉÍÏÓÔØ ÒÑÄÁ
                                1      1             1
                  sin 1 + sin     + sin + . . . + sin + . . .
                                2      3             n
  òÅÛÅÎÉÅ: ïÂÝÉÊ ÞÌÅÎ ÄÁÎÎÏÇÏ ÒÑÄÁ an = sin n1 . ïÂÝÉÊ ÞÌÅÎ ÒÁÓÈÏÄÑ-
ÝÅÇÏÓÑ ÇÁÒÍÏÎÉÞÅÓËÏÇÏ ÒÑÄÁ bn = n1 . ðÒÉÍÅÎÑÅÍ ×ÔÏÒÏÊ ÐÒÉÚÎÁË ÓÒÁ×ÎÅÎÉÑ.
ôÁË ËÁË
           an       sin n1
       lim    = lim 1 = 1 6= 0 (ÐÅÒ×ÙÊ ÚÁÍÅÞÁÔÅÌØÎÙÊ ÐÒÅÄÅÌ),
      n→∞ bn    n→∞
                      n

ÔÏ ÉÓÓÌÅÄÕÅÍÙÊ ÒÑÄ ÒÁÓÈÏÄÉÔÓÑ.
                                                                                     1
   ðÒÉÍÅÒ 5. éÚ×ÅÓÔÎÏ, ÞÔÏ ÞÉÓÌÏ×ÏÊ ÒÑÄ, ÏÂÝÉÊ ÞÌÅÎ ËÏÔÏÒÏÇÏ an =                    n2 ,
                                                          1
ÓÈÏÄÉÔÓÑ. äÏËÁÚÁÔØ ÓÈÏÄÉÍÏÓÔØ ÒÑÄÁ Ó ÏÂÝÉÍ ÞÌÅÎÏÍ bn = n(2n+1) .
   òÅÛÅÎÉÅ: ðÒÉÍÅÎÑÅÍ ×ÔÏÒÏÊ ÐÒÉÚÎÁË ÓÒÁ×ÎÅÎÉÑ.
                                   1
                  an               n2           n(2n + 1)
              lim    = lim         1      = lim           = 2 6= 0.
             n→∞ bn    n→∞
                                n(2n+1)
                                            n→∞    n2

                                            1
óÌÅÄÏ×ÁÔÅÌØÎÏ, ÒÑÄ Ó ÏÂÝÉÍ ÞÌÅÎÏÍ bn = n(2n+1)  ÓÈÏÄÉÔÓÑ.
                                                                                    1
   ðÒÉÍÅÒ 6. äÏËÁÚÁÔØ ÓÈÏÄÉÍÏÓÔØ ÒÑÄÁ Ó ÏÂÝÉÍ ÞÌÅÎÏÍ an = ln(1 +                    n2 ),
ÚÎÁÑ, ÞÔÏ ÒÑÄ Ó ÏÂÝÉÍ ÞÌÅÎÏÍ bn = n12 ÓÈÏÄÉÔÓÑ.