ВУЗ:
Рубрика:
§2. äÏÓÔÁÔÏÞÎÙÅ ÐÒÉÚÎÁËÉ ÓÈÏÄÉÍÏÓÔÉ ÐÏÌÏÖÉÔÅÌØÎÙÈ ÒÑÄÏ× 17
69)
∞
P
n=1
ln
n
5
+ 1
n
5
.
70)
∞
P
n=1
arctg n
10
n
− n
.
71)
∞
P
n=1
3
1/n
− 1
sin
π
n
.
72)
∞
P
n=1
1
n!
.
73)
∞
P
n=1
3n + 1
n!
.
74)
∞
P
n=1
ln
n + 1
2n + 5
.
75)
∞
P
n=2
7
√
n
ln cos
1
n
2
.
76)
∞
P
n=1
arcsin
1
n
p
n + 1 −
p
n
.
77)
∞
P
n=1
n
10
e
−
√
n
.
78)
∞
P
n=1
n
2
e
−
3
√
n
.
79)
∞
P
n=2
ln n
e
n
.
80)
∞
P
n=2
ln n
n!
.
81)
∞
P
n=3
√
n + 2 −
√
n − 2
3
√
n
2
.
82)
∞
P
n=1
a
1
n
− 2 + a
−
1
n
, a > 0, a 6= 1.
83)
∞
P
n=1
p
n + 1 −
p
n
α
arctg
1
n
.
84)
∞
P
n=1
cos
1
n
5
n
.
85)
∞
P
n=1
n + 5
3n − 1
n
.
86)
∞
P
n=1
1
√
n
arccos
1
n
.
87)
∞
P
n=4
n − 3
n + 1
n
.
§2. äÏÓÔÁÔÏÞÎÙÅ ÐÒÉÚÎÁËÉ ÓÈÏÄÉÍÏÓÔÉ ÐÏÌÏÖÉÔÅÌØÎÙÈ ÒÑÄÏ× 17
∞
P n5 + 1
69) ln .
n=1 n5
P∞ arctg n
70) n
.
n=1 10 − n
∞ π
31/n − 1 sin .
P
71)
n=1 n
∞
P 1
72) .
n=1 n!
P∞ 3n + 1
73) .
n=1 n!
P∞ n+1
74) ln .
n=1 2n + 5
∞ √
2
P 1
75) 7
n ln cos .
n=2 n
P∞ arcsin n1
76) p p .
n=1 n+1− n
∞ √
n10e− n .
P
77)
n=1
∞ √
3
n2 e − n
P
78) .
n=1
P∞ ln n
79) n
.
n=2 e
P∞ ln n
80) .
n=2 √n! √
P∞ n+2− n−2
81) √
3
.
n=3 n 2
∞ 1 1
−
P
82) a n − 2 + a n , a > 0, a 6= 1.
n=1
P∞ p p α 1
83) n + 1 − n arctg .
n=1 n
∞ cos 1
n
P
84) n
.
n=1 5 n
P∞ n+5
85) .
n=1 3n − 1
P∞ 1 1
86) √ arccos .
n=1 n n
∞
n
P n−3
87) .
n=4 n + 1
Страницы
- « первая
- ‹ предыдущая
- …
- 15
- 16
- 17
- 18
- 19
- …
- следующая ›
- последняя »
