Ряды. - 28 стр.

UptoLike

28 §4. æÕÎËÃÉÏÎÁÌØÎÙÅ ÒÑÄÙ
ðÒÉÍÅÒ 5. îÁÊÔÉ ÏÂÌÁÓÔØ ÓÈÏÄÉÍÏÓÔÉ ÒÑÄÁ
X
n=1
x
n
n!
.
òÅÛÅÎÉÅ: äÌÑ ÄÁÎÎÏÇÏ ÒÑÄÁ
a
n
=
1
n!
, a
n+1
=
1
(n + 1)!
.
ðÒÉÍÅÎÉÍ ÆÏÒÍÕÌÕ (8). òÁÄÉÕÓ ÓÈÏÄÉÍÏÓÔÉ
R = lim
n→∞
a
n
a
n+1
= lim
n→∞
(n + 1)!
n!
= lim
n→∞
(n + 1) = +.
ôÁË ËÁË R = +, ÔÏ ÉÓÓÌÅÄÕÅÍÙÊ ÒÑÄ ÓÈÏÄÉÔÓÑ ÐÒÉ ÌÀÂÏÍ ÚÎÁÞÅÎÉÉ
ÐÅÒÅÍÅÎÎÏÊ x.
4.3. äÅÊÓÔ×ÉÑ ÓÏ ÓÔÅÐÅÎÎÙÍÉ ÒÑÄÁÍÉ
÷ÎÕÔÒÉ ÏÂÝÅÇÏ ÉÎÔÅÒ×ÁÌÁ ÓÈÏÄÉÍÏÓÔÉ |x x
0
| < R ÓÔÅÐÅÎÎÙÈ ÒÑÄÏ×
X
n=0
a
n
(x x
0
)
n
,
X
n=0
b
n
(x x
0
)
n
ÓÐÒÁ×ÅÄÌÉ×Ù ÒÁ×ÅÎÓÔ×Á
Á) ÓÌÏÖÅÎÉÅ ÓÔÅÐÅÎÎÙÈ ÒÑÄÏ×
X
n=0
a
n
(x x
0
)
n
+
X
n=0
b
n
(x x
0
)
n
=
X
n=0
(a
n
+ b
n
)(x x
0
)
n
,
Â) ÕÍÎÏÖÅÎÉÅ ÓÔÅÐÅÎÎÙÈ ÒÑÄÏ×
X
n=0
a
n
(x x
0
)
n
·
X
n=0
b
n
(x x
0
)
n
=
X
n=0
c
n
(x x
0
)
n
,
ÇÄÅ c
n
=
n
X
k=0
a
k
b
nk
= a
0
b
n
+ a
1
b
n1
+ . . . + a
n
b
0
,
×) ÄÉÆÆÅÒÅÎÃÉÒÏ×ÁÎÉÅ ÓÔÅÐÅÎÎÏÇÏ ÒÑÄÁ
"
X
n=0
a
n
(x x
0
)
n
#
0
=
d
dx
X
n=0
a
n
(x x
0
)
n
=
X
n=0
(n + 1)a
n+1
(x x
0
)
n
,
28                                                                       §4. æÕÎËÃÉÏÎÁÌØÎÙÅ ÒÑÄÙ

     ðÒÉÍÅÒ 5. îÁÊÔÉ ÏÂÌÁÓÔØ ÓÈÏÄÉÍÏÓÔÉ ÒÑÄÁ
                                                 ∞
                                                 X xn
                                                            .
                                                 n=1
                                                       n!

     òÅÛÅÎÉÅ: äÌÑ ÄÁÎÎÏÇÏ ÒÑÄÁ
                                          1                        1
                                   an =      ,       an+1 =              .
                                          n!                    (n + 1)!
ðÒÉÍÅÎÉÍ ÆÏÒÍÕÌÕ (8). òÁÄÉÕÓ ÓÈÏÄÉÍÏÓÔÉ
                               an        (n + 1)!
              R = lim              = lim          = lim (n + 1) = +∞.
                       n→∞    an+1   n→∞    n!      n→∞

   ôÁË ËÁË R = +∞, ÔÏ ÉÓÓÌÅÄÕÅÍÙÊ ÒÑÄ ÓÈÏÄÉÔÓÑ ÐÒÉ ÌÀÂÏÍ ÚÎÁÞÅÎÉÉ
ÐÅÒÅÍÅÎÎÏÊ x.

4.3. äÅÊÓÔ×ÉÑ ÓÏ ÓÔÅÐÅÎÎÙÍÉ ÒÑÄÁÍÉ

÷ÎÕÔÒÉ ÏÂÝÅÇÏ ÉÎÔÅÒ×ÁÌÁ ÓÈÏÄÉÍÏÓÔÉ |x − x0| < R ÓÔÅÐÅÎÎÙÈ ÒÑÄÏ×
                          ∞
                          X                                 ∞
                                                            X
                                                 n
                                   an (x − x0) ,                   bn(x − x0)n
                             n=0                             n=0
ÓÐÒÁ×ÅÄÌÉ×Ù ÒÁ×ÅÎÓÔ×Á
   Á) ÓÌÏÖÅÎÉÅ ÓÔÅÐÅÎÎÙÈ ÒÑÄÏ×
            ∞
            X                         ∞
                                      X                            ∞
                                                                   X
                               n                            n
                  an (x − x0) +             bn (x − x0) =                (an + bn )(x − x0 )n,
            n=0                       n=0                          n=0

     Â) ÕÍÎÏÖÅÎÉÅ ÓÔÅÐÅÎÎÙÈ ÒÑÄÏ×
 ∞
 X                      ∞
                        X                            ∞
                                                     X
                   n                        n
       an (x − x0) ·          bn (x − x0) =              cn (x − x0 )n,
 n=0                    n=0                          n=0
                                                      Xn
                                      ÇÄÅ cn =              ak bn−k = a0 bn + a1 bn−1 + . . . + an b0 ,
                                                      k=0

     ×) ÄÉÆÆÅÒÅÎÃÉÒÏ×ÁÎÉÅ ÓÔÅÐÅÎÎÏÇÏ ÒÑÄÁ
       "∞                 #0       ∞                 ∞
        X
                        n       d X              n
                                                    X
            an (x − x0)      =        an (x − x0) =     (n + 1)an+1(x − x0)n ,
        n=0
                               dx n=0               n=0