Ряды. - 46 стр.

UptoLike

46 §6. ðÒÉÌÏÖÅÎÉÑ ÓÔÅÐÅÎÎÙÈ ÒÑÄÏ×
òÅÛÅÎÉÅ:
1
2
Z
0
dx
3
1 + x
2
=
1
2
Z
0
(1 + x
2
)
1
3
dx.
òÁÚÌÏÖÉÍ ÐÏÄÙÎÔÅÇÒÁÌØÎÕÀ ÆÕÎËÃÉÀ ×ÉÄÁ (1 + x)
m
× ÓÔÅÐÅÎÎÏÊ ÒÑÄ
ÄÁÎÎÏÍ ÓÌÕÞÁÅ m =
1
3
) É ÚÁÍÅÎÉÍ x ÎÁ x
2
.
(1 + x
2
)
1
3
= 1
1
3
x
2
+
2
9
x
4
14
81
x
6
+ . . .
ôÁË ËÁË ÏÔÒÅÚÏË ÉÎÔÅÇÒÉÒÏ×ÁÎÉÑ
0;
1
2
ÐÒÉÎÁÄÌÅÖÉÔ ÏÂÌÁÓÔÉ ÓÈÏÄÉÍÏÓÔÉ
ÐÏÌÕÞÅÎÎÏÇÏ ÒÑÄÁ (1; 1), ÔÏ ÍÏÖÎÏ ÉÎÔÅÇÒÉÒÏ×ÁÔØ ÐÏÞÌÅÎÎÏ × ÕËÁÚÁÎÎÙÈ
ÐÒÅÄÅÌÁÈ
1
2
Z
0
dx
3
1 + x
2
=
1
2
Z
0
1
1
3
x
2
+
2
9
x
4
14
81
x
6
+ . . .
dx =
=
x
x
3
9
+
2x
5
45
14x
7
567
+ . . .
1
2
0
=
1
2
1
72
+
1
720
7
36288
+ . . .
÷ ÐÏÌÕÞÅÎÎÏÍ ÚÎÁËÏÞÅÒÅÄÕÀÝÅÍÓÑ ÒÑÄÅ ÞÅÔ×ÅÒÔÙÊ ÞÌÅÎ ÐÏ ÁÂÓÏÌÀÔÎÏÍÕ
ÚÎÁÞÅÎÉÀ ÍÅÎØÛÅ 0, 001. óÌÅÄÏ×ÁÔÅÌØÎÏ, ÔÒÅÂÕÅÍÁÑ ÔÏÞÎÏÓÔØ ÂÕÄÅÔ ÏÂÅÓÐÅ-
ÞÅÎÁ, ÅÓÌÉ ÕÞÉÔÙ×ÁÔØ ÔÏÌØËÏ ÐÅÒ×ÙÅ ÔÒÉ ÞÌÅÎÁ ÒÑÄÁ.
1
2
Z
0
dx
3
1 + x
2
1
2
1
72
+
1
720
=
39
80
= 0, 4875.
ôÁË ËÁË ÐÅÒ×ÙÊ ÉÚ ÏÔÂÒÏÛÅÎÎÙÈ ÞÌÅÎÏ× ÉÍÅÅÔ ÚÎÁË ÍÉÎÕÓ, ÔÏ ÐÏÌÕÞÅÎÎÏÅ
ÐÒÉÂÌÉÖÅÎÎÏÅ ÚÎÁÞÅÎÉÅ ÂÕÄÅÔ Ó ÉÚÂÙÔËÏÍ. ðÏÜÔÏÍÕ ÏÔ×ÅÔ Ó ÔÏÞÎÏÓÔØÀ ÄÏ
0, 001 ÒÁ×ÅÎ 0, 487.
ðÒÉÍÅÒ 4. ÷ÙÞÉÓÌÉÔØ ÚÎÁÞÅÎÉÅ ln 2 Ó ÔÏÞÎÏÓÔØÀ ÄÏ 10
4
.
òÅÛÅÎÉÅ: ðÏÌØÚÕÑÓØ ÒÁÚÌÏÖÅÎÉÑÍÉ
ln(1 + x) = x
x
2
2
+
x
3
3
. . . + (1)
n1
x
n
n
+ . . . , 1 < x 6 1,
ln(1 x) = x
x
2
2
x
3
3
. . .
x
n
n
. . . , 1 6 x < 1
ÐÏÌÕÞÉÍ, ÞÔÏ
ln
1 + x
1 x
= ln(1 + x) ln(1 x) =
= 2x +
2
3
x
3
+
2
5
x
5
+ . . . +
2
2m + 1
x
2m+1
+ . . . , |x| < 1.
46                                                                      §6. ðÒÉÌÏÖÅÎÉÑ ÓÔÅÐÅÎÎÙÈ ÒÑÄÏ×

     òÅÛÅÎÉÅ:
                                          1                        1
                                      Z2                       Z2
                                                  dx                                 1
                                               √
                                               3
                                                        =              (1 + x2)− 3 dx.
                                                 1 + x2
                                      0                        0
òÁÚÌÏÖÉÍ ÐÏÄÙÎÔÅÇÒÁÌØÎÕÀ ÆÕÎËÃÉÀ ×ÉÄÁ (1 + x)m × ÓÔÅÐÅÎÎÏÊ ÒÑÄ (×
ÄÁÎÎÏÍ ÓÌÕÞÁÅ m = − 31 ) É ÚÁÍÅÎÉÍ x ÎÁ x2.
                          1      1    2     14
                (1 + x2)− 3 = 1 − x2 + x4 − x6 + . . .
                                 3    9     81
                                  1
ôÁË ËÁË ÏÔÒÅÚÏË ÉÎÔÅÇÒÉÒÏ×ÁÎÉÑ 0; 2 ÐÒÉÎÁÄÌÅÖÉÔ ÏÂÌÁÓÔÉ ÓÈÏÄÉÍÏÓÔÉ
ÐÏÌÕÞÅÎÎÏÇÏ ÒÑÄÁ (−1; 1), ÔÏ ÍÏÖÎÏ ÉÎÔÅÇÒÉÒÏ×ÁÔØ ÐÏÞÌÅÎÎÏ × ÕËÁÚÁÎÎÙÈ
ÐÒÅÄÅÌÁÈ
      1                    1
 Z2                    Z2                              
             dx                       1 2 2 4 14 6
          √        =               1 − x + x − x + . . . dx =
          3
            1 + x2                    3   9   81
  0                    0
                                          21
                       x3 2x5 14x7
                       
                                              1  1    1      7
                  = x−   +    −     + ... = −      +     −       + ...
                       9   45   567       0   2 72   720   36288
÷ ÐÏÌÕÞÅÎÎÏÍ ÚÎÁËÏÞÅÒÅÄÕÀÝÅÍÓÑ ÒÑÄÅ ÞÅÔ×ÅÒÔÙÊ ÞÌÅÎ ÐÏ ÁÂÓÏÌÀÔÎÏÍÕ
ÚÎÁÞÅÎÉÀ ÍÅÎØÛÅ 0, 001. óÌÅÄÏ×ÁÔÅÌØÎÏ, ÔÒÅÂÕÅÍÁÑ ÔÏÞÎÏÓÔØ ÂÕÄÅÔ ÏÂÅÓÐÅ-
ÞÅÎÁ, ÅÓÌÉ ÕÞÉÔÙ×ÁÔØ ÔÏÌØËÏ ÐÅÒ×ÙÅ ÔÒÉ ÞÌÅÎÁ ÒÑÄÁ.
                               1
                           Z2
                                      dx      1   1   1   39
                                   √        ≈   −   +   =    = 0, 4875.
                                   3
                                     1 + x2   2 72 720 80
                           0
ôÁË ËÁË ÐÅÒ×ÙÊ ÉÚ ÏÔÂÒÏÛÅÎÎÙÈ ÞÌÅÎÏ× ÉÍÅÅÔ ÚÎÁË ÍÉÎÕÓ, ÔÏ ÐÏÌÕÞÅÎÎÏÅ
ÐÒÉÂÌÉÖÅÎÎÏÅ ÚÎÁÞÅÎÉÅ ÂÕÄÅÔ Ó ÉÚÂÙÔËÏÍ. ðÏÜÔÏÍÕ ÏÔ×ÅÔ Ó ÔÏÞÎÏÓÔØÀ ÄÏ
0, 001 ÒÁ×ÅÎ 0, 487.
    ðÒÉÍÅÒ 4. ÷ÙÞÉÓÌÉÔØ ÚÎÁÞÅÎÉÅ ln 2 Ó ÔÏÞÎÏÓÔØÀ ÄÏ 10−4.
    òÅÛÅÎÉÅ: ðÏÌØÚÕÑÓØ ÒÁÚÌÏÖÅÎÉÑÍÉ
                                          x2       x3                            n
            ln(1 + x) = x −               2    +   3    − . . . + (−1)n−1 xn + . . . ,        −1 < x 6 1,
                                               2        3                n
                                               x        x               x
      ln(1 − x) = −x −                         2
                                                   −    3
                                                            −...−       n
                                                                             − ...,      −1 6 x < 1
ÐÏÌÕÞÉÍ, ÞÔÏ
          1+x
 ln           = ln(1 + x) − ln(1 − x) =
          1−x
                                2      2           2
                        = 2x + x3 + x5 + . . . +        x2m+1 + . . . ,                                |x| < 1.
                                3      5         2m + 1