Ряды. - 51 стр.

UptoLike

§7. òÑÄÙ æÕÒØÅ 51
§7. òÑÄÙ æÕÒØÅ
òÑÄÏÍ æÕÒØÅ ÆÕÎËÃÉÉ f(x) ÎÁ ÉÎÔÅÒ×ÁÌÅ (l; l) ÎÁÚÙ×ÁÅÔÓÑ ÒÑÄ ×ÉÄÁ
(1) f(x)
a
0
2
+
X
n=1
a
n
cos
x
l
+ b
n
sin
x
l
,
ÇÄÅ
a
n
=
1
l
l
Z
l
f(x) cos
x
l
dx, (n = 0, 1, 2, 3, . . .),(2)
b
n
=
1
l
l
Z
l
f(x) sin
x
l
dx, (n = 1, 2, 3, . . .).(3)
úÎÁË ÏÚÎÁÞÁÅÔ, ÞÔÏ ÆÕÎËÃÉÉ f (x) ÓÔÁ×ÉÔÓÑ × ÓÏÏÔ×ÅÔÓÔ×ÉÅ ÔÒÉÇÏÎÏÍÅÔÒÉ-
ÞÅÓËÉÊ ÒÑÄ ÐÏ ÄÁÎÎÏÊ ÆÏÒÍÕÌÅ.
÷ ÓÌÕÞÁÅ, ËÏÇÄÁ l = π, ÔÏ ÅÓÔØ f(x) ÚÁÄÁÎÁ ÎÁ ÉÎÔÅÒ×ÁÌÅ (π; π), ÒÑÄ
æÕÒØÅ ÆÕÎËÃÉÉ f(x) ÚÁÐÉÓÙ×ÁÅÔÓÑ × ×ÉÄÅ
(4) f(x)
a
0
2
+
X
n=1
(a
n
cos nx + b
n
sin nx) ,
ÇÄÅ
a
n
=
1
π
π
Z
π
f(x) cos nx dx, (n = 0, 1, 2, 3, . . .),(5)
b
n
=
1
π
π
Z
π
f(x) sin nx dx, (n = 1, 2, 3, . . .).(6)
÷ ÞÁÓÔÎÏÓÔÉ, ÅÓÌÉ ÆÕÎËÃÉÑ f(x) ÞÅÔÎÁÑ ÎÁ (l; l), ÔÏ ×ÓÅ ËÏÜÆÆÉÃÉÅÎÔÙ
b
n
ÒÁ×ÎÙ ÎÕÌÀ, ÔÁË ËÁË × ÆÏÒÍÕÌÅ (3) ÉÎÔÅÇÒÁÌ ÂÅÒÅÔÓÑ ÏÔ ÎÅÞÅÔÎÏÊ ÆÕÎË-
ÃÉÉ ÐÏ ÓÉÍÍÅÔÒÉÞÎÏÍÕ ÏÔÎÏÓÉÔÅÌØÎÏ ÎÕÌÑ ÉÎÔÅÒ×ÁÌÕ. ÷ ÆÏÒÍÕÌÅ (2) × ÜÔÏÍ
ÓÌÕÞÁÅ ÉÎÔÅÇÒÁÌ ÂÅÒÅÔÓÑ ÏÔ ÞÅÔÎÏÊ ÆÕÎËÃÉÉ ÐÏ ÓÉÍÍÅÔÒÉÞÎÏÍÕ ÏÔÎÏÓÉÔÅÌØ-
ÎÏ ÎÕÌÑ ÉÎÔÅÒ×ÁÌÕ, ÐÏÜÔÏÍÕ ÜÔÏÔ ÉÎÔÅÇÒÁÌ ÒÁ×ÅÎ ÕÄ×ÏÅÎÎÏÍÕ ÉÎÔÅÇÒÁÌÕ ÏÔ
ÔÏÊ ÖÅ ÆÕÎËÃÉÉ ÐÏ ÉÎÔÅÒ×ÁÌÕ (0; l).
éÔÁË, × ÓÌÕÞÁÅ ÞÅÔÎÏÊ ÆÕÎËÃÉÉ f (x) ÎÁ ÉÎÔÅÒ×ÁÌÅ (l; l) ÉÍÅÅÍ
(7) f(x)
a
0
2
+
X
n=1
a
n
cos
x
l
,
§7. òÑÄÙ æÕÒØÅ                                                                   51

      §7. òÑÄÙ æÕÒØÅ
òÑÄÏÍ æÕÒØÅ ÆÕÎËÃÉÉ f (x) ÎÁ ÉÎÔÅÒ×ÁÌÅ (−l; l) ÎÁÚÙ×ÁÅÔÓÑ ÒÑÄ ×ÉÄÁ
                            ∞
                      a0 X           nπx          nπx 
(1)           f (x) ∼   +      an cos     + bn sin       ,
                      2    n=1
                                       l            l
ÇÄÅ
                         Zl
                     1                     nπx
(2)          an    =           f (x) cos       dx,    (n = 0, 1, 2, 3, . . .),
                     l                      l
                         −l
                         Zl
                     1                     nπx
(3)           bn   =           f (x) sin       dx,    (n = 1, 2, 3, . . .).
                     l                      l
                         −l

úÎÁË ∼ ÏÚÎÁÞÁÅÔ, ÞÔÏ ÆÕÎËÃÉÉ f (x) ÓÔÁ×ÉÔÓÑ × ÓÏÏÔ×ÅÔÓÔ×ÉÅ ÔÒÉÇÏÎÏÍÅÔÒÉ-
ÞÅÓËÉÊ ÒÑÄ ÐÏ ÄÁÎÎÏÊ ÆÏÒÍÕÌÅ.
   ÷ ÓÌÕÞÁÅ, ËÏÇÄÁ l = π, ÔÏ ÅÓÔØ f (x) ÚÁÄÁÎÁ ÎÁ ÉÎÔÅÒ×ÁÌÅ (−π; π), ÒÑÄ
æÕÒØÅ ÆÕÎËÃÉÉ f (x) ÚÁÐÉÓÙ×ÁÅÔÓÑ × ×ÉÄÅ
                                       ∞
                           a0 X
(4)                f (x) ∼   +     (an cos nx + bn sin nx) ,
                           2   n=1
ÇÄÅ
                          Zπ
                     1
(5)           an   =            f (x) cos nx dx,     (n = 0, 1, 2, 3, . . .),
                     π
                          −π
                          Zπ
                      1
(6)           bn =              f (x) sin nx dx,     (n = 1, 2, 3, . . .).
                      π
                          −π

   ÷ ÞÁÓÔÎÏÓÔÉ, ÅÓÌÉ ÆÕÎËÃÉÑ f (x) ÞÅÔÎÁÑ ÎÁ (−l; l), ÔÏ ×ÓÅ ËÏÜÆÆÉÃÉÅÎÔÙ
bn ÒÁ×ÎÙ ÎÕÌÀ, ÔÁË ËÁË × ÆÏÒÍÕÌÅ (3) ÉÎÔÅÇÒÁÌ ÂÅÒÅÔÓÑ ÏÔ ÎÅÞÅÔÎÏÊ ÆÕÎË-
ÃÉÉ ÐÏ ÓÉÍÍÅÔÒÉÞÎÏÍÕ ÏÔÎÏÓÉÔÅÌØÎÏ ÎÕÌÑ ÉÎÔÅÒ×ÁÌÕ. ÷ ÆÏÒÍÕÌÅ (2) × ÜÔÏÍ
ÓÌÕÞÁÅ ÉÎÔÅÇÒÁÌ ÂÅÒÅÔÓÑ ÏÔ ÞÅÔÎÏÊ ÆÕÎËÃÉÉ ÐÏ ÓÉÍÍÅÔÒÉÞÎÏÍÕ ÏÔÎÏÓÉÔÅÌØ-
ÎÏ ÎÕÌÑ ÉÎÔÅÒ×ÁÌÕ, ÐÏÜÔÏÍÕ ÜÔÏÔ ÉÎÔÅÇÒÁÌ ÒÁ×ÅÎ ÕÄ×ÏÅÎÎÏÍÕ ÉÎÔÅÇÒÁÌÕ ÏÔ
ÔÏÊ ÖÅ ÆÕÎËÃÉÉ ÐÏ ÉÎÔÅÒ×ÁÌÕ (0; l).
   éÔÁË, × ÓÌÕÞÁÅ ÞÅÔÎÏÊ ÆÕÎËÃÉÉ f (x) ÎÁ ÉÎÔÅÒ×ÁÌÅ (−l; l) ÉÍÅÅÍ
                                              ∞
                                      a0 X           nπx
(7)                           f (x) ∼   +     an cos     ,
                                      2   n=1
                                                      l