ВУЗ:
Рубрика:
§7. òÑÄÙ æÕÒØÅ 53
ÓÈÏÄÉÔÓÑ Ë f(x
0
).
f(x
0
) =
a
0
2
+
∞
X
n=1
a
n
cos
nπx
0
l
+ b
n
sin
nπx
0
l
.
-
6
0 x
y
3
−2
−π
π
ðÒÉÍÅÒ 1. îÁÊÔÉ ÒÁÚÌÏÖÅÎÉÅ × ÒÑÄ æÕÒØÅ
ÆÕÎËÃÉÉ f (x) ÎÁ ÉÎÔÅÒ×ÁÌÅ (−π; π).
f(x) =
−2, ÅÓÌÉ −π < x < 0,
3, ÅÓÌÉ 0 6 x < π.
òÅÛÅÎÉÅ: úÁÄÁÎÎÁÑ ÆÕÎËÃÉÑ f(x) ÕÄÏ×ÌÅ-
Ô×ÏÒÑÅÔ ÕÓÌÏ×ÉÑÍ ÔÅÏÒÅÍÙ Ï ÒÁÚÌÏÖÉÍÏÓÔÉ ×
ÒÑÄ æÕÒØÅ, ÔÁË ËÁË ÎÁ ÉÎÔÅÒ×ÁÌÅ (−π; π) ÆÕÎË-
ÃÉÑ ÉÍÅÅÔ ÏÄÎÕ ÔÏÞËÕ ÒÁÚÒÙ×Á ÐÅÒ×ÏÇÏ ÒÏÄÁ
(ÐÒÉ x = 0), Á ×Ï ×ÓÅÈ ÄÒÕÇÉÈ ÔÏÞËÁÈ ÜÔÏÇÏ ÉÎ-
ÔÅÒ×ÁÌÁ ÏÎÁ ÄÉÆÆÅÒÅÎÃÉÒÕÅÍÁ. óÌÅÄÏ×ÁÔÅÌØÎÏ, ÄÌÑ ÄÁÎÎÏÊ ÆÕÎËÃÉÉ ÓÐÒÁ-
×ÅÄÌÉ×Ï ÒÁ×ÅÎÓÔ×Ï
f(x) =
a
0
2
+
∞
X
n=1
(a
n
cos nx + b
n
sin nx) .
þÔÏÂÙ ÎÁÊÔÉ ËÏÜÆÆÉÃÉÅÎÔ a
0
, ÐÒÉÍÅÎÑÅÍ ÆÏÒÍÕÌÕ (5) ÐÒÉ n = 0.
a
0
=
1
π
π
Z
−π
f(x) dx =
1
π
0
Z
−π
−2 dx +
π
Z
0
3 dx
=
=
1
π
[−2x]
0
−π
+ [3x]
π
0
=
1
π
(−2π + 3π) = 1.
ôÅÐÅÒØ ÎÁÈÏÄÉÍ ËÏÜÆÆÉÃÉÅÎÔÙ a
n
(n = 1, 2, 3, . . .) ÐÏ ÆÏÒÍÕÌÅ (5).
a
n
=
1
π
0
Z
−π
−2 cos nx dx +
π
Z
0
3 cos nx dx
=
=
1
π
−2 sin nx
n
0
−π
+
3 sin nx
n
π
0
!
= 0.
§7. òÑÄÙ æÕÒØÅ 53
ÓÈÏÄÉÔÓÑ Ë f (x0).
∞
a0 X nπx0 nπx0
f (x0) = + an cos + bn sin .
2 n=1
l l
ðÒÉÍÅÒ 1. îÁÊÔÉ ÒÁÚÌÏÖÅÎÉÅ × ÒÑÄ æÕÒØÅ y6
ÆÕÎËÃÉÉ f (x) ÎÁ ÉÎÔÅÒ×ÁÌÅ (−π; π).
3
−2, ÅÓÌÉ −π < x < 0,
f (x) =
3, ÅÓÌÉ 0 6 x < π.
−π -
0 π x
òÅÛÅÎÉÅ: úÁÄÁÎÎÁÑ ÆÕÎËÃÉÑ f (x) ÕÄÏ×ÌÅ-
Ô×ÏÒÑÅÔ ÕÓÌÏ×ÉÑÍ ÔÅÏÒÅÍÙ Ï ÒÁÚÌÏÖÉÍÏÓÔÉ × −2
ÒÑÄ æÕÒØÅ, ÔÁË ËÁË ÎÁ ÉÎÔÅÒ×ÁÌÅ (−π; π) ÆÕÎË-
ÃÉÑ ÉÍÅÅÔ ÏÄÎÕ ÔÏÞËÕ ÒÁÚÒÙ×Á ÐÅÒ×ÏÇÏ ÒÏÄÁ
(ÐÒÉ x = 0), Á ×Ï ×ÓÅÈ ÄÒÕÇÉÈ ÔÏÞËÁÈ ÜÔÏÇÏ ÉÎ-
ÔÅÒ×ÁÌÁ ÏÎÁ ÄÉÆÆÅÒÅÎÃÉÒÕÅÍÁ. óÌÅÄÏ×ÁÔÅÌØÎÏ, ÄÌÑ ÄÁÎÎÏÊ ÆÕÎËÃÉÉ ÓÐÒÁ-
×ÅÄÌÉ×Ï ÒÁ×ÅÎÓÔ×Ï
∞
a0 X
f (x) = + (an cos nx + bn sin nx) .
2 n=1
þÔÏÂÙ ÎÁÊÔÉ ËÏÜÆÆÉÃÉÅÎÔ a0 , ÐÒÉÍÅÎÑÅÍ ÆÏÒÍÕÌÕ (5) ÐÒÉ n = 0.
Zπ Z0 Zπ
1 1
a0 = f (x) dx = −2 dx + 3 dx =
π π
−π −π 0
1 1
= [−2x]0−π + [3x]π0 = (−2π + 3π) = 1.
π π
ôÅÐÅÒØ ÎÁÈÏÄÉÍ ËÏÜÆÆÉÃÉÅÎÔÙ an (n = 1, 2, 3, . . .) ÐÏ ÆÏÒÍÕÌÅ (5).
Z0 Zπ
1
an = −2 cos nx dx + 3 cos nx dx =
π
−π 0
0 π !
1 −2 sin nx 3 sin nx
= + = 0.
π n −π n 0
Страницы
- « первая
- ‹ предыдущая
- …
- 51
- 52
- 53
- 54
- 55
- …
- следующая ›
- последняя »
