Ряды. - 55 стр.

UptoLike

§7. òÑÄÙ æÕÒØÅ 55
a
n
=
1
2
0
Z
2
0 cos
x
2
dx +
2
Z
0
x cos
x
2
dx
=
1
2
"
x
sin
x
2
2
+
cos
x
2
n
2
π
2
4
#
2
0
=
=
2
n
2
π
2
(cos 1) =
4
n
2
π
2
ÐÒÉ n ÎÅÞÅÔÎÏÍ,
0 ÐÒÉ n ÞÅÔÎÏÍ,
b
n
=
1
2
0
Z
2
0 sin
x
2
dx +
2
Z
0
x sin
x
2
dx
=
1
2
"
x
cos
x
2
2
+
sin
x
2
n
2
π
2
4
#
2
0
=
=
2
cos =
2
ÐÒÉ n ÎÅÞÅÔÎÏÍ,
2
ÐÒÉ n ÞÅÔÎÏÍ.
ðÏÄÓÔÁ×É× ÎÁÊÄÅÎÎÙÅ ËÏÜÆÆÉÃÉÅÎÔÙ × ÆÏÒÍÕÌÕ (1), ÐÏÌÕÞÉÍ ÉÓËÏÍÏÅ ÒÁÚ-
ÌÏÖÅÎÉÅ ÚÁÄÁÎÎÏÊ ÆÕÎËÃÉÉ f(x).
f(x) =
1
2
4
π
2
cos
πx
2
+
1
3
2
cos
3πx
2
+
1
5
2
cos
5πx
2
+ . . .
+
+
2
π
sin
πx
2
1
2
sin
2πx
2
+
1
3
sin
3πx
2
1
4
sin
4πx
2
+ . . .
.
-
6
0 x
y
@
@
@
@
@
@
1 1
ðÒÉÍÅÒ 3. òÁÚÌÏÖÉÔØ × ÒÑÄ æÕÒØÅ ÆÕÎË-
ÃÉÀ f (x) = |x| ÎÁ ÉÎÔÅÒ×ÁÌÅ (1; 1).
òÅÛÅÎÉÅ: üÔÁ ÆÕÎËÃÉÑ Ñ×ÌÑÅÔÓÑ ÞÅÔÎÏÊ.
äÌÑ ×ÙÞÉÓÌÅÎÉÑ ËÏÜÆÆÉÃÉÅÎÔÏ× æÕÒØÅ ÐÏÌÁÇÁ-
ÅÍ l = 1 × ÆÏÒÍÕÌÅ (8).
a
0
=
2
1
1
Z
0
x dx = 2
x
2
2
1
0
= 1,
a
n
= 2
1
Z
0
x cos(x) dx = 2
x sin(x)
+
cos(x)
n
2
π
2
1
0
=
=
2
n
2
π
2
(cos 1) =
4
n
2
π
2
ÐÒÉ n ÎÅÞÅÔÎÏÍ,
0 ÐÒÉ n ÞÅÔÎÏÍ.
ðÏÄÓÔÁ×É× ÎÁÊÄÅÎÎÙÅ ËÏÜÆÆÉÃÉÅÎÔÙ × ÆÏÒÍÕÌÕ (7), ÐÏÌÕÞÉÍ ÉÓËÏÍÏÅ ÒÁÚ-
ÌÏÖÅÎÉÅ ÚÁÄÁÎÎÏÊ ÆÕÎËÃÉÉ × ÒÑÄ æÕÒØÅ.
|x| =
1
2
4
π
2
cos πx +
cos 3πx
3
2
+
cos 5πx
5
2
+ . . .
.
§7. òÑÄÙ æÕÒØÅ                                                                   55
          0
                           Z2
                                                 "                      #2
       1                          nπx  1 sin nπx               cos nπx
          Z
                   nπx
  an =       0 cos     dx + x cos       dx =       x nπ 2 + n2 π22            =
       2            2                2          2        2          4
          −2                0                                              0

                                                  − n24π2 ÐÒÉ n ÎÅÞÅÔÎÏÍ,
                                               
                              2
                          = 2 2 (cos nπ − 1) =
                           nπ                       0        ÐÒÉ n ÞÅÔÎÏÍ,
          0
                           Z2
                                                "                         #2
                                                            nπx        nπx
       1                          nπx  1              cos        sin
          Z
                   nπx
  bn =  0 sin         dx + x sin      dx =        −x nπ 2 + n2 π22            =
       2            2               2          2           2          4
          −2               0                                                 0
                                                  2
                                     2               nπ      ÐÒÉ n ÎÅÞÅÔÎÏÍ,
                                =−     cos nπ =        2
                                    nπ              − nπ ÐÒÉ n ÞÅÔÎÏÍ.
ðÏÄÓÔÁ×É× ÎÁÊÄÅÎÎÙÅ ËÏÜÆÆÉÃÉÅÎÔÙ × ÆÏÒÍÕÌÕ (1), ÐÏÌÕÞÉÍ ÉÓËÏÍÏÅ ÒÁÚ-
ÌÏÖÅÎÉÅ ÚÁÄÁÎÎÏÊ ÆÕÎËÃÉÉ f (x).
                                                    
        1   4      πx     1     3πx   1     5πx
 f (x) = − 2 cos       + 2 cos      + 2 cos     + ... +
        2 π         2     3      2   5       2
                                                                   
                   2        πx 1     2πx 1      3πx 1      4πx
                 +      sin    − sin     + sin       − sin     + ... .
                   π         2   2    2     3     2    4    2

   ðÒÉÍÅÒ 3. òÁÚÌÏÖÉÔØ × ÒÑÄ æÕÒØÅ ÆÕÎË-                                y6
ÃÉÀ f (x) = |x| ÎÁ ÉÎÔÅÒ×ÁÌÅ (−1; 1).
   òÅÛÅÎÉÅ: üÔÁ ÆÕÎËÃÉÑ Ñ×ÌÑÅÔÓÑ ÞÅÔÎÏÊ.                  @
                                                            @
äÌÑ ×ÙÞÉÓÌÅÎÉÑ ËÏÜÆÆÉÃÉÅÎÔÏ× æÕÒØÅ ÐÏÌÁÇÁ-                      @
                                                                    @
ÅÍ l = 1 × ÆÏÒÍÕÌÅ (8).                                                 @
                                                                            @         -
                       Z1                 1
                                                         −1                     0   1 x
                   2                 x2
              a0 =          x dx = 2          = 1,
                   1                 2    0
                       0
          Z1                                             1
                                  x sin(nπx) cos(nπx)
 an = 2        x cos(nπx) dx = 2            +                 =
                                      nπ         n2 π 2     0
          0
                                                        − n24π2 ÐÒÉ n ÎÅÞÅÔÎÏÍ,
                                                    
                                  2
                              = 2 2 (cos nπ − 1) =
                                 nπ                       0     ÐÒÉ n ÞÅÔÎÏÍ.
ðÏÄÓÔÁ×É× ÎÁÊÄÅÎÎÙÅ ËÏÜÆÆÉÃÉÅÎÔÙ × ÆÏÒÍÕÌÕ (7), ÐÏÌÕÞÉÍ ÉÓËÏÍÏÅ ÒÁÚ-
ÌÏÖÅÎÉÅ ÚÁÄÁÎÎÏÊ ÆÕÎËÃÉÉ × ÒÑÄ æÕÒØÅ.
                                                     
                 1   4           cos 3πx cos 5πx
            |x| = − 2 cos πx +          +        + ... .
                 2 π                32      52