Решение задач оптимального управления с использованием математической системы MATLAB и пакета имитационного моделирования SIMULINK. Сивохин А.В - 177 стр.

UptoLike

177
4
=
1
0
),,(]][[
x
x
dxyyxFxyJ
2/
0
22
)(
π
dxyy
1)
2
(;0)0( ==
π
yy
5
=
1
0
),,,(]][[
x
x
dxyyyxFxyJ
1
0
2
)48( dxyy
0)1(;0)1(
;4)0(;1)0(
=
=
=
=
yy
yy
6
=
1
0
),,,(]][[
x
x
dxyyyxFxyJ
1
0
2
)2( dxyxy
1.0)1(;0)1(
;0)0(;0)0(
=
=
=
=
yy
yy
7
=
1
0
),,,(]][[
x
x
dxyyyxFxyJ
1
0
2
dxye
x
eyey
yy
2)1(;)1(
;1)0(;0)0(
=
=
=
=
8
=
1
0
),,,(]][[
x
x
dxyyyxFxyJ
1
0
2
dxye
x
eyey
yy
=
=
=
=
)1(;)1(
;1)0(;0)0(
9
=
1
0
),,,(]][[
x
x
dxyyyxFxyJ
1
0
2
)24( dxxyy
1)1(;2.0)1(
;0)0(;0)0(
=
=
=
=
yy
yy
10
=
1
0
),,(]][[
x
x
dxyyxFxyJ
1
0
22
)2( dxxyyy
0)1(;0)0(
=
= yy
11
=
1
0
),,(]][[
x
x
dxyyxFxyJ
1
0
22
)16( dxxyyy
0)1(;0)0(
=
= yy
12
=
1
0
),,(]][[
x
x
dxyyxFxyJ
+
1
0
22
)2( dxxyyy
0)2(;0)0(
=
= yy
13
=
1
0
),,(]][[
x
x
dxyyxFxyJ
++
1
0
22
)16( dxxyyy
0)2(;0)0(
=
= yy
                  x1                         π /2                                                 π
                                                                                     y (0) = 0; y ( ) = 1
     J [ y[ x]] = ∫ F ( x, y, y ′)dx          ∫ ( y′              − y 2 )dx
                                                              2
4                                                                                                  2
                  x0                             0
                  x1                         1
     J [ y[ x]] = ∫ F ( x, y, y ′, y ′′)dx   ∫ ( y ′′             − 48 y)dx
                                                          2
5                                                                                    y (0) = 1; y ′(0) = 4;
                  x0                         0
                                                                                     y (1) = 0; y ′(1) = 0
                  x1                         1
     J [ y[ x]] = ∫ F ( x, y, y ′, y ′′)dx   ∫ (2 xy − y ′′ )dx
                                                                         2
6                                                                                    y (0) = 0; y ′(0) = 0;
                  x0                         0
                                                                                     y (1) = 0; y ′(1) = 0.1
                  x1                         1
     J [ y[ x]] = ∫ F ( x, y, y ′, y ′′)dx   ∫e           y ′′ 2 dx
                                                     −x
7                                                                                    y (0) = 0; y ′(0) = 1;
                  x0                         0
                                                                                     y (1) = e; y ′(1) = 2e
                  x1                         1                                       y (0) = 0; y ′(0) = 1;
     J [ y[ x]] = ∫ F ( x, y, y ′, y ′′)dx   ∫e          y ′′ 2 dx
                                                     x
8                                                                                    y (1) = e; y ′(1) = e
                  x0                         0
                  x1                         1
     J [ y[ x]] = ∫ F ( x, y, y ′, y ′′)dx   ∫ ( y ′′             − 24 xy)dx
                                                          2
9                                                                                    y (0) = 0; y ′(0) = 0;
                  x0                         0
                                                                                     y (1) = 0.2; y ′(1) = 1
                  x1                         1
     J [ y[ x]] = ∫ F ( x, y, y ′)dx         ∫ ( y′               − y 2 − 2 xy)dx
                                                          2
10                                                                                   y (0) = 0; y (1) = 0
                  x0                         0
                  x1                         1
     J [ y[ x]] = ∫ F ( x, y, y ′)dx         ∫ ( y′               − y 2 − 16 xy)dx
                                                          2
11                                                                                   y (0) = 0; y (1) = 0
                  x0                         0
                  x1                         1
     J [ y[ x]] = ∫ F ( x, y, y ′)dx         ∫ ( y′               − y 2 + 2 xy)dx
                                                          2
12                                                                                   y (0) = 0; y (2) = 0
                  x0                         0
                  x1                         1
     J [ y[ x]] = ∫ F ( x, y, y ′)dx         ∫ ( y′               + y 2 + 16 xy)dx
                                                          2
13                                                                                   y (0) = 0; y (2) = 0
                  x0                         0




                                                                   177