ВУЗ:
Составители:
Рубрика:
lim
(x,y)(x
0
,y
0
)
f(x, y)= f(x
0
, y
0
).
Но
lim
nª
f(
1
n
3
,
1
n
)= lim
nª
sin(
1
n
4
− 1)= − sin 1 x
x lim
nª
f(
1
n
,
1
n
3
)= lim
nª
sin(1 −
1
n
4
)= sin 1,
откуда следует, что lim
(x,y)(0,0)
f(x, y)не существует. Доопределить функцию
так, чтобы она стала непрерывной, нельзя.
(b) Представим функцию в ви де произведения
g(x, y)= y ċ
tg xy
xy
ċ
xy
»
x
4
+ y
4
,
где первый множитель — бесконечно м алый при ( x, y) (0, 0), второй
ограничен в окрестности точки (0, 0), так как lim
z0
tg z
z
= 1, а третий не пре-
восходит по модулю
1
º
2
, так как 2x
2
y
2
D x
4
+ y
4
. Таким образом, функция
g(x, y)является бесконечно м алой при (x, y) (0, 0)и с танет непрерыв-
ной, если доопределить ее в точке M
0
нулем.
Ответ. (a) Нельзя. (b) Можно, положив g(0, 0)= 0.
2. Дифференцируемость
Определение. Фу нкция f(x), определенная в окрестности точки x
0
,
называется дифференцируемой в x
0
, если ее приращение в этой точке мож-
но представить в виде
∆f(x
0
)= f(x)− f(x
0
)=
n
Q
k=1
A
k
(x
k
− x
0
k
)+ α(x)Sx − x
0
S, где lim
xx
0
α(x)= 0,
при этом дифференциалом функции f(x)в точке x
0
называют выражение
d f(x
0
, x − x
0
)=
n
P
k=1
A
k
(x
k
− x
0
k
).
Из дифференцируемости в точке x
0
функции f(x )вытекает суще ство-
вание в x
0
частных производных по каждой из n переменных, k = 1, . . . , n:
7
lim f(x, y) = f(x0 , y0 ).
(x,y) (x0 ,y0 )
Но
lim f( n13 , n1 ) = lim sin( n14 − 1) = − sin 1 x
n ª n ª
x lim f( n1 , n13 ) = lim sin(1 − n14 ) = sin 1,
n ª n ª
откуда следует, что lim f(x, y) не существует. Доопределить функцию
(x,y) (0,0)
так, чтобы она стала непрерывной, нельзя.
(b) Представим функцию в виде произведения
tg xy xy
g(x, y) = y ċ ċ » 4 4,
xy x +y
где первый множитель — бесконечно малый при (x, y) (0, 0), второй
ограничен в окрестности точки (0, 0), так как lim
tg z
= 1, а третий не пре-
z 0 z
1
восходит по модулю º , так как 2x2 y2 D x4 + y4 . Таким образом, функция
2
g(x, y) является бесконечно малой при (x, y) (0, 0) и станет непрерыв-
ной, если доопределить ее в точке M0 нулем.
Ответ. (a) Нельзя. (b) Можно, положив g(0, 0) = 0.
2. Дифференцируемость
Определение. Функция f(x), определенная в окрестности точки x0 ,
называется дифференцируемой в x0 , если ее приращение в этой точке мож-
но представить в виде
n
∆ f(x ) = f(x) − f(x ) = Q Ak (xk − xk0 ) + α(x)Sx − x0 S,
0 0
где lim0 α(x) = 0,
k=1 x x
при этом дифференциалом функции f(x) в точке x0 называют выражение
n
d f(x0 , x − x0 ) = P Ak (xk − xk0 ).
k=1
Из дифференцируемости в точке x0 функции f(x) вытекает существо-
вание в x0 частных производных по каждой из n переменных, k = 1, . . . , n:
7
Страницы
- « первая
- ‹ предыдущая
- …
- 5
- 6
- 7
- 8
- 9
- …
- следующая ›
- последняя »
