Геометрия Лобачевского и ее применение в специальной теории относительности. Часть 1. Сосов Е.Н. - 26 стр.

UptoLike

Составители: 

Рубрика: 

R × E
E
dl
2
= dx
2
0
+ dx
2
.
F
1
: (B(0, r), ρ) (S
+
, ρ
L
), F
1
(x) =
r
r
2
x
2
< r; x >
dl
2
= dˆx
2
0
+ dˆx
2
=
r
4
(x, dx)
2
(r
2
x
2
)
3
+
rx(x, dx)
(r
2
x
2
)
3/2
+
rdx
(r
2
x
2
)
1/2
2
=
r
2
(r
2
x
2
)
3
(r
2
(x, dx)
2
+ x
2
(x, dx)
2
+ 2(x, dx)
2
(r
2
x
2
) + dx
2
(r
2
x
2
)
2
) =
r
2
(r
2
x
2
)
2
((r
2
x
2
)dx
2
+ (x, dx)
2
).
dl
2
=
r
2
((r
2
x
2
)dx
2
+ (x, dx)
2
)
(r
2
x
2
)
2
.
f
1
: (B(0, r), ρ
P
) (S
+
, ρ
L
), f
1
(x) =
r
r
2
x
2
< r
2
+ x
2
; 2rx > .
dl
2
= dˆx
2
0
+ dˆx
2
=
16r
6
(x, dx)
2
(r
2
x
2
)
4
+
4r
4
(dx
2
(r
2
x
2
)
2
+ 4(x, dx)
2
(r
2
x
2
) + 4x
2
(x, dx)
2
)
(r
2
x
2
)
4
=
4r
4
dx
2
(r
2
x
2
)
2
.
dl
2
=
4r
4
dx
2
(r
2
x
2
)
2
.
f
1
θ
1
: (Π
+
, ρ
Π
+
) (S
+
, ρ
L
)
Ðàññìîòðèì â R × E ïñåâäîðèìàíîâó ìåòðèêó, âûáðàâ çíàê òàêèì îáðà-
çîì, ÷òîáû èíäóöèðîâàííàÿ ðèìàíîâà ìåòðèêà íà E áûëà ïîëîæèòåëüíî
îïðåäåëåííîé
                                      dl2 = −dx20 + dx2 .
Èñïîëüçóåì èçîìåòðèþ
                                                                       r
          F −1 : (B(0, r), ρ) → (S+ , ρL ),         F −1 (x) = √             < r; x >
                                                                    r 2 − x2
äëÿ íàõîæäåíèÿ ðèìàíîâîé ìåòðèêè â ìîäåëè ÁåëüòðàìèÊëåéíà.
                                                                                      2
                               r4 (x, dx)2
                                                    
      2                                                  rx(x, dx)        rdx
    dl =     −dx̂20       2
                      + dx̂ = − 2          +                         +                     =
                               (r − x2 )3               (r2 − x2 )3/2 (r2 − x2 )1/2
      r2
   2      2 3
              (−r2 (x, dx)2 + x2 (x, dx)2 + 2(x, dx)2 (r2 − x2 ) + dx2 (r2 − x2 )2 ) =
 (r − x )
                             r2
                           2    2  2
                                     ((r2 − x2 )dx2 + (x, dx)2 ).
                        (r − x )
Ñëåäîâàòåëüíî, ðèìàíîâà ìåòðèêà â ìîäåëè ÁåëüòðàìèÊëåéíà
èìååò âèä
                                r2 ((r2 − x2 )dx2 + (x, dx)2 )
                         dl2 =                                 .
                                          (r2 − x2 )2
Äëÿ íàõîæäåíèÿ ðèìàíîâîé ìåòðèêè â ìîäåëè Ïóàíêàðå â øàðå èñïîëü-
çóåì èçîìåòðèþ
                                                          r
   f −1 : (B(0, r), ρP ) → (S+ , ρL ),      f −1 (x) = 2      2
                                                                 < r2 + x2 ; 2rx > .
                                                       r −x
                              2                16r6 (x, dx)2
                     dl =         −dx̂20
                                  + dx̂ = − 2 2
                                                             +
                                                (r − x2 )4
    4r4 (dx2 (r2 − x2 )2 + 4(x, dx)2 (r2 − x2 ) + 4x2 (x, dx)2 )     4r4 dx2
                                                                 =             .
                            (r2 − x2 )4                            (r2 − x2 )2
Ñëåäîâàòåëüíî, ðèìàíîâà ìåòðèêà â ìîäåëè Ïóàíêàðå â øàðå èìååò
âèä
                                         4r4 dx2
                                dl2 = 2            .
                                       (r − x2 )2
Äëÿ íàõîæäåíèÿ ðèìàíîâîé ìåòðèêè â ìîäåëè Ïóàíêàðå â îòêðûòîì ïî-
ëóïðîñòðàíñòâå èñïîëüçóåì èçîìåòðèþ
                              f −1 ◦ θ−1 : (Π+ , ρΠ+ ) → (S+ , ρL )

                                               25