Разработка управленческого решения средствами пакета Excel. Степанов А.Г. - 66 стр.

UptoLike

Составители: 

66
1
[ ] ( )exp( )
2
xn X j j nd
π
−π
ωω
π
(3.13)
и дискретное
1
0
12
[ ] [ ]exp(
),
N
n
np
Xp xn j
NN
=
π
=−
(3.14)
1
0
2
[ ] [ ]exp( ),
N
n
np
xn X p j
N
=
π
=
(3.15)
где p номер спектральной составляющей. Первая пара выражений
(3.12) и (3.13) представляет собой преобразование Фурье дискретной
конечной выборки, а вторая пара (3.14) и (3.15) получила название дис-
кретного преобразования Фурье.
Важной особенностью дискретного преобразования Фурье является
наличие конечного числа N спектральных отсчетов, что позволяет вы-
числять его точно. Для дискретного преобразования найдены методы,
позволяющие вычислять его с меньшим числом математических опе-
раций, чем требуется по основной формуле, получившие название быс-
трого преобразования Фурье (БПФ). Обычно именно это преобразова-
ние реализовано в виде функций или надстроек в типовых программных
системах. Следует отметить, что, в отличие от преобразования Фурье
дискретной конечной выборки, дискретное преобразование Фурье пери-
одизирует исходный процесс во временной области, повторяя исходную
выборку N отсчетов бесконечное количество раз. Это обстоятельство
приходится принимать во внимание при сравнении спектров X(jw) и X(p)
особенно при малых N.
На основе аппарата дискретного преобразования Фурье может быть
решен большой комплекс задач, связанных с определением реакции си-
стемы на влияние воздействия (в том числе и задачи оптимизации).
Практические приложения этой теории в задачах менеджмента иссле-
дованы мало.
Метод динамического программирования
Динамическим программированием называется метод оптимизации,
в котором процесс принятия решения может быть разбит на шаги [15].
Каждый шаг переводит объект управления из состояния S
k
в состояние