ВУЗ:
§4. äÉÆÆÅÒÅÎÃÉÒÏ×ÁÎÉÅ ËÏÍÐÌÅËÓÎÙÈ ÆÕÎËÃÉÊ 27
ôÁÂÌÉÃÁ ÐÒÏÉÚ×ÏÄÎÙÈ
1.(z
n
)
0
= nz
n−1
. 2.(e
z
)
0
= e
z
.
3.(sin z)
0
= cos z. 4.(cos z)
0
= −sin z.
5.(tg z)
0
=
1
cos
2
z
. 6.(ctg z)
0
= −
1
sin
2
z
.
7.(sh z)
0
= ch z. 8.(ch z)
0
= sh z.
9.(th z)
0
=
1
ch
2
z
. 10.(cth z)
0
= −
1
sh
2
z
.
11.(Arcsin z)
0
=
1
√
1−z
2
. 12.(Arccos z)
0
= −
1
√
1−z
2
.
13.(Arctg z)
0
=
1
1+z
2
. 14.(Arcctg z)
0
= −
1
1+z
2
.
15.(Ln z)
0
=
1
z
.
úÁÍÅÔÉÍ, ÞÔÏ ÐÒÉ ÄÉÆÆÅÒÅÎÃÉÒÏ×ÁÎÉÉ ÒÁÓÓÍÁÔÒÉ×ÁÀÔÓÑ ÔÏÌØËÏ ÏÄÎÏÚÎÁÞ-
ÎÙÅ ÆÕÎËÃÉÉ. ÷ ÒÁ×ÅÎÓÔ×ÁÈ (11)(15) ÐÏÎÉÍÁÅÍ ÌÅ×ÕÀ ÞÁÓÔØ ËÁË ÐÒÏÉÚ×ÏÄ-
ÎÕÀ ÏÔ ÐÒÏÉÚ×ÏÌØÎÏÊ ÏÄÎÏÚÎÁÞÎÏÊ ×ÅÔ×É ÓÏÏÔ×ÅÔÓÔ×ÕÀÝÅÊ ÆÕÎËÃÉÉ, ×ÙÄÅ-
ÌÅÎÎÏÊ × ÏËÒÅÓÔÎÏÓÔÉ ÄÁÎÎÏÊ ÔÏÞËÉ.
ðÒÉÍÅÒ 1. îÁÊÔÉ ÇÄÅ ÄÉÆÆÅÒÅÎÃÉÒÕÅÍÁ ÆÕÎËÃÉÑ f (z) =
e
z
+ 1
e
z
− 1
É ÎÁÊÔÉ
ÅÅ ÐÒÏÉÚ×ÏÄÎÕÀ.
òÅÛÅÎÉÅ: æÕÎËÃÉÑ f (z) ÏÐÒÅÄÅÌÅÎÁ ×ÅÚÄÅ ËÒÏÍÅ ÔÏÞÅË, ÇÄÅ
e
z
− 1 = 0, e
z
= 1.
ðÏÌÏÖÉÍ
z = x + iy, e
z
= e
x+iy
= e
x
(cos y + i sin y).
ðÒÅÄÓÔÁ×ÉÍ ÞÉÓÌÏ 1 × ÔÒÉÇÏÎÏÍÅÔÒÉÞÅÓËÏÊ ÆÏÒÍÅ
1 = cos 2πk + i sin 2πk, k ∈ Z,
ÐÏÜÔÏÍÕ e
x
= 1, y = 2πk ÉÌÉ x = 0, y = 2πk, k ∈ Z. ïËÏÎÞÁÔÅÌØÎÏ ÐÏÌÕÞÉÍ
z = i2πk, k ∈ Z. ôÁËÉÍ ÏÂÒÁÚÏÍ, ÆÕÎËÃÉÑ f(z) ÏÐÒÅÄÅÌÅÎÁ ×ÓÀÄÕ ËÒÏÍÅ
ÔÏÞÅË z = i2πk, k ∈ Z.
ðÏ ÐÒÁ×ÉÌÕ ÄÉÆÆÅÒÅÎÃÉÒÏ×ÁÎÉÑ ÞÁÓÔÎÏÇÏ Ä×ÕÈ ÆÕÎËÃÉÊ ÐÏÌÕÞÉÍ
f
0
(z) =
(e
z
+ 1)
0
(e
z
− 1) − (e
z
+ 1)(e
z
− 1)
0
(e
z
− 1)
2
=
=
e
z
(e
z
− 1) − e
z
(e
z
+ 1)
(e
z
− 1)
2
=
−2e
z
(e
z
− 1)
2
.
éÚ ÐÏÓÌÅÄÎÅÇÏ ÒÁ×ÅÎÓÔ×Á ×ÉÄÎÏ, ÞÔÏ ÆÕÎËÃÉÑ Ñ×ÌÑÅÔÓÑ ÄÉÆÆÅÒÅÎÃÉÒÕÅÍÏÊ
×Ï ×ÓÅÈ ÔÏÞËÁÈ, ÇÄÅ ÏÎÁ ÏÐÒÅÄÅÌÅÎÁ.
§4. äÉÆÆÅÒÅÎÃÉÒÏ×ÁÎÉÅ ËÏÍÐÌÅËÓÎÙÈ ÆÕÎËÃÉÊ 27 ôÁÂÌÉÃÁ ÐÒÏÉÚ×ÏÄÎÙÈ 1.(z n )0 = nz n−1. 2.(ez )0 = ez . 3.(sin z)0 = cos z. 4.(cos z)0 = − sin z. 5.(tg z)0 = cos12 z . 6.(ctg z)0 = − sin12 z . 7.(sh z)0 = ch z. 8.(ch z)0 = sh z. 9.(th z)0 = ch12 z . 10.(cth z)0 = − sh12 z . 1 1 11.(Arcsin z)0 = √1−z 2. 12.(Arccos z)0 = − √1−z 2. 1 1 13.(Arctg z)0 = 1+z 2. 14.(Arcctg z)0 = − 1+z 2. 0 1 15.(Ln z) = z . úÁÍÅÔÉÍ, ÞÔÏ ÐÒÉ ÄÉÆÆÅÒÅÎÃÉÒÏ×ÁÎÉÉ ÒÁÓÓÍÁÔÒÉ×ÁÀÔÓÑ ÔÏÌØËÏ ÏÄÎÏÚÎÁÞ- ÎÙÅ ÆÕÎËÃÉÉ. ÷ ÒÁ×ÅÎÓÔ×ÁÈ (11) (15) ÐÏÎÉÍÁÅÍ ÌÅ×ÕÀ ÞÁÓÔØ ËÁË ÐÒÏÉÚ×ÏÄ- ÎÕÀ ÏÔ ÐÒÏÉÚ×ÏÌØÎÏÊ ÏÄÎÏÚÎÁÞÎÏÊ ×ÅÔ×É ÓÏÏÔ×ÅÔÓÔ×ÕÀÝÅÊ ÆÕÎËÃÉÉ, ×ÙÄÅ- ÌÅÎÎÏÊ × ÏËÒÅÓÔÎÏÓÔÉ ÄÁÎÎÏÊ ÔÏÞËÉ. ez + 1 ðÒÉÍÅÒ 1. îÁÊÔÉ ÇÄÅ ÄÉÆÆÅÒÅÎÃÉÒÕÅÍÁ ÆÕÎËÃÉÑ f (z) = z É ÎÁÊÔÉ e −1 ÅÅ ÐÒÏÉÚ×ÏÄÎÕÀ. òÅÛÅÎÉÅ: æÕÎËÃÉÑ f (z) ÏÐÒÅÄÅÌÅÎÁ ×ÅÚÄÅ ËÒÏÍÅ ÔÏÞÅË, ÇÄÅ ez − 1 = 0, ez = 1. ðÏÌÏÖÉÍ z = x + iy, ez = ex+iy = ex (cos y + i sin y). ðÒÅÄÓÔÁ×ÉÍ ÞÉÓÌÏ 1 × ÔÒÉÇÏÎÏÍÅÔÒÉÞÅÓËÏÊ ÆÏÒÍÅ 1 = cos 2πk + i sin 2πk, k ∈ Z, ÐÏÜÔÏÍÕ ex = 1, y = 2πk ÉÌÉ x = 0, y = 2πk, k ∈ Z. ïËÏÎÞÁÔÅÌØÎÏ ÐÏÌÕÞÉÍ z = i2πk, k ∈ Z. ôÁËÉÍ ÏÂÒÁÚÏÍ, ÆÕÎËÃÉÑ f (z) ÏÐÒÅÄÅÌÅÎÁ ×ÓÀÄÕ ËÒÏÍÅ ÔÏÞÅË z = i2πk, k ∈ Z. ðÏ ÐÒÁ×ÉÌÕ ÄÉÆÆÅÒÅÎÃÉÒÏ×ÁÎÉÑ ÞÁÓÔÎÏÇÏ Ä×ÕÈ ÆÕÎËÃÉÊ ÐÏÌÕÞÉÍ 0 (ez + 1)0 (ez − 1) − (ez + 1)(ez − 1)0 f (z) = = (ez − 1)2 ez (ez − 1) − ez (ez + 1) −2ez = = z . (ez − 1)2 (e − 1)2 éÚ ÐÏÓÌÅÄÎÅÇÏ ÒÁ×ÅÎÓÔ×Á ×ÉÄÎÏ, ÞÔÏ ÆÕÎËÃÉÑ Ñ×ÌÑÅÔÓÑ ÄÉÆÆÅÒÅÎÃÉÒÕÅÍÏÊ ×Ï ×ÓÅÈ ÔÏÞËÁÈ, ÇÄÅ ÏÎÁ ÏÐÒÅÄÅÌÅÎÁ.
Страницы
- « первая
- ‹ предыдущая
- …
- 25
- 26
- 27
- 28
- 29
- …
- следующая ›
- последняя »