Теория функций комплексного переменного. - 47 стр.

UptoLike

§7. óÔÅÐÅÎÎÙÅ ÒÑÄÙ. òÁÚÌÏÖÅÎÉÅ ÆÕÎËÃÉÉ × ÓÔÅÐÅÎÎÏÊ ÒÑÄ 47
òÅÛÅÎÉÅ: ðÏ ÕÓÌÏ×ÉÀ ÉÍÅÅÍ |c
n
| =
1
5
n
. äÌÑ ÔÏÇÏ ÞÔÏÂÙ ÎÁÊÔÉ ÒÁÄÉÕÓ
ÓÈÏÄÉÍÏÓÔÉ, ×ÏÓÐÏÌØÚÕÅÍÓÑ ÆÏÒÍÕÌÏÊ
1
R
= lim
n→∞
n
p
|c
n
|,
ÐÏÌÕÞÉÍ
1
R
= lim
n→∞
n
r
1
5
n
=
1
5
É R = 5. ðÒÏ×ÅÒÉÍ ÓÈÏÄÉÍÏÓÔØ ÒÑÄÁ
P
n=1
z
n
5
n
ÎÁ ÏËÒÕÖÎÏÓÔÉ |z| = 5. äÌÑ
ÞÅÇÏ ÎÁÊÄÅÍ ÍÏÄÕÌØ ×ÙÒÁÖÅÎÉÑ , ÓÔÏÑÝÅÇÏ ÐÏÄ ÚÎÁËÏÍ ÓÕÍÍÙ ÐÒÉ |z| = 5, Á
ÉÍÅÎÎÏ
z
n
5
n
=
5
n
5
n
= 1.
ôÁË ËÁË ÐÒÉ |z| = 5 ÎÅ ×ÙÐÏÌÎÅÎ ÎÅÏÂÈÏÄÉÍÙÊ ÐÒÉÚÎÁË ÓÈÏÄÉÍÏÓÔÉ ÒÑÄÏ×
lim
n→∞
z
n
5
n
6= 0,
ÔÏ ÐÒÉ |z| = 5 ÒÑÄ
P
n=0
z
n
5
n
ÒÁÓÈÏÄÉÔÓÑ. ôÁËÉÍ ÏÂÒÁÚÏÍ, ÉÓÓÌÅÄÕÅÍÙÊ ÒÑÄ
ÓÈÏÄÉÔÓÑ ×Ï ×ÓÅÈ ÔÏÞËÁÈ z, ÕÄÏ×ÌÅÔ×ÏÒÑÀÝÉÈ ÕÓÌÏ×ÉÀ |z| < 5.
ðÒÉÍÅÒ 3. îÁÊÔÉ ÒÁÄÉÕÓ ÓÈÏÄÉÍÏÓÔÉ É ÏÂÌÁÓÔØ ÓÈÏÄÉÍÏÓÔÉ ÒÑÄÁ
X
n=0
z
n
n!
.
òÅÛÅÎÉÅ: ðÏ ÕÓÌÏ×ÉÀ ÉÍÅÅÍ |c
n
| =
1
n!
. äÌÑ ÔÏÇÏ ÞÔÏÂÙ ÎÁÊÔÉ ÒÁÄÉÕÓ
ÓÈÏÄÉÍÏÓÔÉ, ×ÏÓÐÏÌØÚÕÅÍÓÑ ÆÏÒÍÕÌÏÊ
R = lim
n→∞
|c
n
|
|c
n+1
|
,
ÐÏÌÕÞÉÍ
R = lim
n→∞
(n + 1)!
n!
= .
ôÁËÉÍ ÏÂÒÁÚÏÍ, ÒÑÄ
P
n=0
z
n
n!
ÓÈÏÄÉÔÓÑ ×Ï ×ÓÅÈ ÔÏÞËÁÈ ËÏÍÐÌÅËÓÎÏÊ ÐÌÏÓËÏÓÔÉ.
§7. óÔÅÐÅÎÎÙÅ ÒÑÄÙ. òÁÚÌÏÖÅÎÉÅ ÆÕÎËÃÉÉ × ÓÔÅÐÅÎÎÏÊ ÒÑÄ                47
                                     1
   òÅÛÅÎÉÅ: ðÏ ÕÓÌÏ×ÉÀ ÉÍÅÅÍ |cn | = n . äÌÑ ÔÏÇÏ ÞÔÏÂÙ ÎÁÊÔÉ ÒÁÄÉÕÓ
                                    5
ÓÈÏÄÉÍÏÓÔÉ, ×ÏÓÐÏÌØÚÕÅÍÓÑ ÆÏÒÍÕÌÏÊ
                             1       p
                               = lim n |cn |,
                             R n→∞
ÐÏÌÕÞÉÍ
                                       r
                           1           1
                                       n       1
                             = lim       n
                                           =
                           R n→∞       5       5
                                      P∞ zn
É R = 5. ðÒÏ×ÅÒÉÍ ÓÈÏÄÉÍÏÓÔØ ÒÑÄÁ            n
                                               ÎÁ ÏËÒÕÖÎÏÓÔÉ |z| = 5. äÌÑ
                                      n=1  5
ÞÅÇÏ ÎÁÊÄÅÍ ÍÏÄÕÌØ ×ÙÒÁÖÅÎÉÑ , ÓÔÏÑÝÅÇÏ ÐÏÄ ÚÎÁËÏÍ ÓÕÍÍÙ ÐÒÉ |z| = 5, Á
ÉÍÅÎÎÏ
                             zn     5n
                                  =    = 1.
                             5n     5n
ôÁË ËÁË ÐÒÉ |z| = 5 ÎÅ ×ÙÐÏÌÎÅÎ ÎÅÏÂÈÏÄÉÍÙÊ ÐÒÉÚÎÁË ÓÈÏÄÉÍÏÓÔÉ ÒÑÄÏ×
                                   zn
                               lim    6= 0,
                              n→∞ 5n

                     P∞ zn
ÔÏ ÐÒÉ |z| = 5 ÒÑÄ         n
                             ÒÁÓÈÏÄÉÔÓÑ. ôÁËÉÍ ÏÂÒÁÚÏÍ, ÉÓÓÌÅÄÕÅÍÙÊ ÒÑÄ
                     n=0 5
ÓÈÏÄÉÔÓÑ ×Ï ×ÓÅÈ ÔÏÞËÁÈ z, ÕÄÏ×ÌÅÔ×ÏÒÑÀÝÉÈ ÕÓÌÏ×ÉÀ |z| < 5.
   ðÒÉÍÅÒ 3. îÁÊÔÉ ÒÁÄÉÕÓ ÓÈÏÄÉÍÏÓÔÉ É ÏÂÌÁÓÔØ ÓÈÏÄÉÍÏÓÔÉ ÒÑÄÁ
                                 ∞
                                 X zn
                                            .
                                 n=0
                                       n!

                                    1
   òÅÛÅÎÉÅ: ðÏ ÕÓÌÏ×ÉÀ ÉÍÅÅÍ |cn | = . äÌÑ ÔÏÇÏ ÞÔÏÂÙ ÎÁÊÔÉ ÒÁÄÉÕÓ
                                    n!
ÓÈÏÄÉÍÏÓÔÉ, ×ÏÓÐÏÌØÚÕÅÍÓÑ ÆÏÒÍÕÌÏÊ
                                        |cn |
                             R = lim           ,
                                   n→∞ |cn+1 |

ÐÏÌÕÞÉÍ
                                  (n + 1)!
                         R = lim           = ∞.
                              n→∞    n!
                   P∞ zn
ôÁËÉÍ ÏÂÒÁÚÏÍ, ÒÑÄ        ÓÈÏÄÉÔÓÑ ×Ï ×ÓÅÈ ÔÏÞËÁÈ ËÏÍÐÌÅËÓÎÏÊ ÐÌÏÓËÏÓÔÉ.
                   n=0 n!