Лекции по теории статистических выводов. Володин И.Н. - 107 стр.

UptoLike

Составители: 

ϕ(T )
m(θ) = B(θ)
Z
R
e
θ t
ϕ(t) (t) . (9.6)
θ
0
m
0
(θ
0
) = 0.
m
0
(θ) = E
θ
[ T ϕ(T ) ] +
B
0
(θ)
B(θ)
E
θ
ϕ(T ) . (9.7)
ϕ(T ) α
0 = E
θ
T +
B
0
(θ)
B(θ)
.
B
0
(θ)/B(θ) = E
θ
T
m
0
(θ) = E
θ
[ T ϕ(T ) ] E
θ
T E
θ
ϕ(T ) .
θ = θ
0
, m
0
(θ
0
) = 0,
2
θ = θ
0
T
θ = θ
0
m, P(T < m t |θ
0
) = P(T > m + t |θ
0
).
ϕ(m T ) = ϕ(m + T ),
γ
2
= γ
1
, C
2
= 2mC
1
,
C
1
γ
1
P(T < C
1
|θ
0
) + γ
1
P(T = C
1
|θ
0
) = α/2 .
E
θ
0
ϕ(T ) = α,
(t m) ϕ( t ), t R,
E
θ
0
T = m
E
θ
0
[ T ϕ(T ) ] = E
θ
0
[ ( T m ) ϕ(T ) ] + m E
θ
0
ϕ(T ) = m α = α E
θ
0
T .
íîñòè êðèòåðèÿ ϕ(T ) ìîæíî ïðåäñòàâèòü â âèäå èíòåãðàëà
                                       Z
                        m(θ) = B(θ)         e θ t ϕ(t) dν(t) .                (9.6)
                                        R
  Íåñìåùåííîñòü êðèòåðèÿ âëå÷åò íåîáõîäèìîñòü âûïîëíåíèÿ ðàâåíñòâà
(9.4), îòêóäà è èç ñóùåñòâîâàíèÿ ïðîèçâîäíûõ ó ôóíêöèè ìîùíîñòè (Ëåì-
ìà 9.2) âûòåêàåò, ÷òî θ0 åñòü òî÷êà ìèíèìóìà ôóíêöèè ìîùíîñòè è ïðî-
èçâîäíàÿ â ýòîé òî÷êå m0 (θ0 ) = 0. Äèôôåðåíöèðóÿ (9.6) ïîä çíàêîì èí-
òåãðàëà, ïîëó÷àåì ñëåäóþùåå ïðåäñòàâëåíèå äëÿ ïðîèçâîäíîé îò ôóíêöèè
ìîùíîñòè:
                                      B 0 (θ)
                   m0 (θ) = Eθ [ T ϕ(T ) ] +  Eθ ϕ(T ) .                      (9.7)
                                      B(θ)
Äëÿ êðèòåðèÿ ϕ(T ) ≡ α ïîñëåäíåå óðàâíåíèå ïðåâðàùàåòñÿ â
                                          B 0 (θ)
                               0 = Eθ T +         .
                                          B(θ)
Ïîäñòàíîâêà â (9.7) B 0 (θ)/B(θ) = − Eθ T äàåò ñëåäóþùåå âûðàæåíèå äëÿ
ïðîèçâîäíîé îò ôóíêöèè ìîùíîñòè:

                    m0 (θ) = Eθ [ T ϕ(T ) ] − Eθ T Eθ ϕ(T ) .

Ïîñëåäíåå óðàâíåíèå ïðè θ = θ0 , êîãäà m0 (θ0 ) = 0, ñîâïàäàåò ñ (9.5). Òàêèì
îáðàçîì, íåñìåùåííîñòü, â äîïîëíåíèå ê (9.4), âëå÷åò è (9.5).             2
  Çàìå÷àíèå 9.1      . Îïðåäåëåíèå ÐÍÌ íåñìåùåííîãî êðèòåðèÿ äëÿ ïðî-
âåðêè ãèïîòåçû θ = θ0 ïî ôîðìóëàì (9.2), (9.4) è (9.5) çíà÷èòåëüíî óïðî-
ùàåòñÿ, êîãäà ðàñïðåäåëåíèå ñòàòèñòèêè T ïðè ñïðàâåäëèâîñòè íóëåâîé
ãèïîòåçû ( θ = θ0 ) ÿâëÿåòñÿ ñèììåòðè÷íûì îòíîñèòåëüíî íåêîòîðîé òî÷êè
m, òî åñòü P(T < m − t | θ0 ) = P(T > m + t | θ0 ).  ýòîì ñëó÷àå ÐÍÌ
êðèòåðèé áóäåò ñèììåòðè÷íûì: ϕ(m − T ) = ϕ(m + T ), ïîñêîëüêó òàêîãî
âèäà êðèòåðèè óäîâëåòâîðÿþò (9.4), åñëè ïîëîæèòü γ2 = γ1 , C2 = 2m − C1 ,
à êîíñòàíòû C1 è γ1 íàõîäèòü èç óðàâíåíèÿ

                  P(T < C1 | θ0 ) + γ1 P(T = C1 | θ0 ) = α/2 .

Òîãäà Eθ0 ϕ(T ) = α, òî åñòü âûïîëíÿåòñÿ óñëîâèå (9.4), ïðè÷åì ýòî óñëîâèå
âëå÷åò (9.5). Äåéñòâèòåëüíî, ôóíêöèÿ (t − m) ϕ( t ), t ∈ R, â ýòîì ñëó÷àå
ÿâëÿåòñÿ íå÷åòíîé, E θ0 T = m , è ïîýòîìó

   E θ0 [ T ϕ(T ) ] = E θ0 [ ( T − m ) ϕ(T ) ] + m E θ0 ϕ(T ) = m α = α E θ0 T .

                                        107