Лекции по теории статистических выводов. Володин И.Н. - 99 стр.

UptoLike

Составители: 

P
θ
( Θ
(X) 3 θ
0
) > P
θ
( Θ(X) 3 θ
0
). 2
Θ
(X)
B = {(θ, θ
0
) : θ K(θ
0
) }.
T = T (X)
G(t |θ) T
t R θ Θ R.
1α
θ(X) θ.
t = T (x) T,
x.
G( t |θ ) = 1 α
θ =
ˆ
θ ( t ) Θ, θ (X) =
ˆ
θ ( T ).
T θ
0
Θ
θ = θ
0
θ > θ
0
T (x) > C(θ
0
),
C(θ
0
) P
θ
0
( T (X) > C(θ
0
) ) = α.
θ Θ A(θ) = {x : T (x) 6 C(θ)}
(1 α)
Θ(x) = {θ : x A(θ) }. C(θ)
θ, θ(X) = C
1
(T (X)),
C
1
( ·) C( ·).
C( ·)
θ
1
> θ
0
θ
C(θ
1
) P
θ
1
( T (X) > C(θ
1
) ) = α.
îòêóäà
                    Pθ ( Θ ∗ (X) 3 θ0 ) > Pθ ( Θ(X) 3 θ0 ).         2


  Òàêèì îáðàçîì, Θ ∗ (X) ÿâëÿåòñÿ ÐÍÒ äîâåðèòåëüíûì ìíîæåñòâîì íà
B = { (θ, θ 0 ) : θ ∈ K(θ 0 ) }.
  Â ïðåäûäóùåì ïàðàãðàôå áûë íàéäåí ÐÍÌ êðèòåðèé äëÿ ïðîâåðêè îä-
íîñòîðîííèõ ãèïîòåç ïðè àíàëîãè÷íûõ îäíîñòîðîííèõ àëüòåðíàòèâàõ. Ïðè-
ìåíèì ýòîò êðèòåðèé â ïîñòðîåíèè ÐÍÒ âåðõíèõ è íèæíèõ äîâåðèòåëüíûõ
ãðàíèö äëÿ çíà÷åíèÿ äåéñòâèòåëüíîãî ïàðàìåòðà.
  Òåîðåìà 8.2. Ïóñòü ñòàòèñòè÷åñêàÿ ìîäåëü îáëàäàåò ìîíîòîííûì îò-
íîñèòåëüíî íåêîòîðîé ñòàòèñòèêè              T = T (X)    îòíîøåíèåì ïðàâäîïîäîáèÿ

è ôóíêöèÿ ðàñïðåäåëåíèÿ         G(t | θ)    T íåïðåðûâíà ïî àðãóìåíòó
                                             ñòàòèñòèêè

t ∈ R ïðè êàæäîì ôèêñèðîâàííîì çíà÷åíèè θ ∈ Θ ⊂ R.
   ( i ) Ïðè êàæäîì çíà÷åíèè 1−α äîâåðèòåëüíîãî óðîâíÿ ñóùåñòâóåò ÐÍÒ
íèæíÿÿ äîâåðèòåëüíàÿ ãðàíèöà θ(X) äëÿ θ.

  ( ii )   Ïóñòü   t = T (x)    çíà÷åíèå ñòàòèñòèêè       T,   êîãäà ðåçóëüòàò ñòàòè-

ñòè÷åñêîãî ýêñïåðèìåíòà ðàâåí           x.   Åñëè óðàâíåíèå


                                   G( t | θ ) = 1 − α
èìååò ðåøåíèå      θ = θ̂ ( t ) ∈ Θ,   òî ðåøåíèå åäèíñòâåííî è      θ (X) = θ̂ ( T ).
  Ä î ê à ç à ò å ë ü ñ ò â î ( i ) Ïîñêîëüêó ôóíêöèÿ ðàñïðåäåëåíèÿ ñòàòèñòèêè
T íåïðåðûâíà, òî äëÿ êàæäîãî θ0 ∈ Θ ÐÍÌ êðèòåðèé ïðîâåðêè ãèïîòåçû
θ = θ0 ïðè àëüòåðíàòèâå θ > θ0 áóäåò íåðàíäîìèçèðîâàííûì è îïðåäåëÿòü-
ñÿ (ñì. Òåîðåìó 7.1) êðèòè÷åñêîé îáëàñòüþ T (x) > C(θ0 ), ãäå êðèòè÷åñêàÿ
êîíñòàíòà C(θ0 ) óäîâëåòâîðÿåò óðàâíåíèþ Pθ0 ( T (X) > C(θ0 ) ) = α.
  Ïðè ëþáîì θ ∈ Θ äëÿ îáëàñòè A(θ) = {x : T (x) 6 C(θ)} ïðèíÿòèÿ
ÐÍÌ êðèòåðèÿ ñîïîñòàâèì (ñì. Òåîðåìó 8.1) (1 − α) -äîâåðèòåëüíîå ìíî-
æåñòâî Θ(x) = { θ : x ∈ A(θ) }. Åñëè ôóíêöèÿ C(θ) ìîíîòîííî âîçðàñòàåò
ñ ðîñòîì θ, òî ÐÍÒ íèæíÿÿ äîâåðèòåëüíàÿ ãðàíèöà θ(X) = C −1 (T (X)),
ãäå C −1 ( · )  ôóíêöèÿ, îáðàòíàÿ ê C( · ). Îñòàëîñü ïîêàçàòü, ÷òî ôóíêöèè
C( · ) ñòðîãî âîçðàñòàåò.
  Ïóñòü θ1 > θ0  íåêîòîðîå äðóãîå çíà÷åíèå ïàðàìåòðà θ èç îáëàñòè àëü-
òåðíàòèâ è ïóñòü C(θ1 ) óäîâëåòâîðÿåò óðàâíåíèþ Pθ1 ( T (X) > C(θ1 ) ) = α.

                                              99