Краткий курс теоретической механики. Яковенко Г.Н. - 32 стр.

UptoLike

Составители: 

Рубрика: 

ωωω
ωω
= ωωω
ωω
= ωωω
ωω
+ ωωω
ωω
, (9.4)
εεε
εε
= εεε
εε
= εεε
εε
+ εεε
εε
+ [ωωω
ωω
, ωωω
ωω
]. (9.5)
¤ C
V
C
= V
C
= V
C
+ V
C
= V
O
+ [ωωω
ωω
, OC]
| {z }
V
C
+ V
B
+ [ωωω
ωω
, BC]
| {z }
V
C
.
OC = OB + BC
V
C
= V
O
+ [ωωω
ωω
, OB] + V
B
| {z }
V
B
+[ωωω
ωω
+ ωωω
ωω
, BC] =
= V
B
+ [ωωω
ωω
+ ωωω
ωω
, BC].
(9.6)
ωωω
ωω
V
C
= V
B
+ [ωωω
ωω
, BC]
t
ωωω
ωω
= ωωω
ωω
+ ωωω
ωω
=
3
X
k=1
ω
k
i
k
+
3
X
k=1
ω
k
e
k
εεε
εε
= ˙ω˙ω˙ω
˙ω˙ω
=
3
X
k=1
˙ω
k
i
k
+
3
X
k=1
˙ω
k
e
k
+
3
X
k=1
ω
k
˙
e
k
.
εεε
εε
=
3
X
k=1
˙ω
k
i
k
, εεε
εε
=
3
X
k=1
˙ω
k
e
k
3
X
k=1
ω
k
˙
e
k
=
3
X
k=1
ω
k
[ωωω
ωω
, e
k
] = [ωωω
ωω
,
3
X
k=1
ω
k
e
k
] = [ωωω
ωω
, ωωω
ωω
],
¥
                                     ω àáñ = ω = ω ïåð + ω îòí ,                                               (9.4)
                         εàáñ = ε = εïåð + εîòí + [ω
                                                   ω ïåð , ω îòí ].                                            (9.5)
 ¤ Ïðîèçâîëüíàÿ òî÷êà C òåëà ó÷àñòâóåò â ñëîæíîì äâèæåíèè è å¼ ñêîðîñòü â
ñîîòâåòñòâèè ñ ôîðìóëàìè (7.7) è (4.10) ðàâíà

      VCàáñ = VC = VCïåð + VCîòí = VO + [ω
                                         ω ïåð , OC] + VB
                                                        îòí
                                                               ω îòí , BC] .
                                                            + [ω
                                   |     {z        } |         {z        }
                                                                  ïåð                           îòí
                                                                                               VC
                                                              VC


Ó÷¼ò â ýòîé ôîðìóëå OC = OB + BC (ðèñ. 9.1), ïåðåãðóïïèðîâêà ñëàãàåìûõ è
èñïîëüçîâàíèå ôîðìóëû (9.3) ïðèâîäèò ê ðåçóëüòàòó

                         ω ïåð , OB] + VB
              VC = VO + [ω              îòí
                                              ω ïåð + ω îòí , BC] =
                                            +[ω
                   |           {z         }
                                             VB                                                                (9.6)
                    = VB + [ω
                            ω        ω ïåð   +ω    ω îòí   , BC].

Òåîðåìà 4.1 ãëàñèò: ñóùåñòâóåò åäèíñòâåííûé âåêòîð ω , òàêîé ÷òî ñêîðîñòè
äâóõ òî÷åê òåëà ñâÿçàíû âûðàæåíèåì VC = VB + [ω   ω , BC], ñðàâíåíèå êîòîðîãî
ñ ðåçóëüòàòîì (9.6) äîêàçûâàåò ôîðìóëó (9.4). Äëÿ îáîñíîâàíèÿ ôîðìóëû (9.5)
ïðîäèôôåðåíöèðóåì ïî âðåìåíè t óãëîâóþ ñêîðîñòü
                                                        3
                                                        X                     3
                                                                              X
                               ïåð           îòí                  ïåð
                     ω =ω            +ω             =         ωk ik +               ωkîòí ek
                                                        k=1                   k=1

(ïðèâëå÷åíû ôîðìóëû (9.1), (9.2)):
                                3
                                X                       3
                                                        X                      3
                                                                               X
                                           ïåð                    îòí
                    ε = ω̇ =           ω̇k ik +               ω̇k ek +               ωkîòí ėk .
                                k=1                     k=1                    k=1

Ê ôîðìóëå (9.5) ïðèâîäèò èñïîëüçîâàíèå îáîçíà÷åíèé èç (9.1), (9.2)
                                     3
                                     X                                      3
                                                                            X
                         ïåð                  ïåð             îòí
                        ε      =           ω̇k ik ,           ε         =         ω̇kîòí ek
                                     k=1                                    k=1

äëÿ ïåðâûõ äâóõ ñóìì è ïðåîáðàçîâàíèå ñ ó÷¼òîì ëåììû 4.1 ïîñëåäíåé ñóììû:
       3
       X                3
                        X                                               3
                                                                        X
              îòí              îòí      ïåð                   ïåð
             ωk ėk =             ω
                              ωk [ω                     ω
                                              , ek ] = [ω           ,         ωkîòí ek ] = [ω
                                                                                            ω ïåð , ω îòí ],
       k=1              k=1                                             k=1

 â ïîñëåäíåì ïåðåõîäå èñïîëüçîâàíî îáîçíà÷åíèå èç (9.2). ¥



                                                        32