ВУЗ:
Составители:
Рубрика:
относительно системы
321
iii
Ο
с началом в точке
Ο
и
ортами, параллельными одноименным ортам исходной
системы отсчета
32
i
1
iiA
(рис. 1).
r
Поскольку для произвольной точки тела положение
вектора
в связанной с телом системе
ΟΕ
остается
неизменным, т.е. компоненты
в выражении
k
r
∑
=
3
1
kk
er=
k
r
постоянны, то в силу формулы (2.4) положение
R
этой
точки относительно системы отсчета
321
iiiA
задается
равенством
,
~~
(
0
3
1
3
1
)
ΛΛΛΛ
Ο
ΟΟ
rRir
erRrRR
k
kk
k
kk
+
+=+=
=
∑
=
=
∑
=
=
где
∑
=
3
1
kk
ir
=
0
k
r
– постоянный вектор, который является
отображением вектора из связанного с телом базиса
ΟΕ
в
базис
Ο
Ι
и определяет начальное положение
рассматриваемой точки тела в системе
321
ii i
Ο
(когда базисы
ΟΕ
и совпадают).
r
Ο
Ι
Найдем скорость произвольной точки тела в системе
. Учитывая, что для нормированного кватерниона
Λ
выполняются соотношения
321
iiiA
,0
~~
,1
~
=+⇒=
ΛΛΛΛΛΛ
(2.19)
получаем
,
~~
~~
00
ΛΛΛΛ
ΛΛΛΛ
Ο
ΟΟ
rrV
rrVrRV
−+=
=++=+=
(2.20)
29
относительно системы Ο i1i2 i3 с началом в точке Ο и
ортами, параллельными одноименным ортам исходной
системы отсчета Ai1i2 i3 (рис. 1).
Поскольку для произвольной точки тела положение
вектора r в связанной с телом системе ΟΕ остается
3
неизменным, т.е. компоненты rk в выражении r = ∑ rk ek
k =1
постоянны, то в силу формулы (2.4) положение R этой
точки относительно системы отсчета Ai1i2 i3 задается
равенством
3
R = RΟ + r = RΟ + ∑ rk ek =
k =1
3 ~ ~
= Λ ( ∑ rk ik ) Λ = RΟ + Λ r 0 Λ ,
k =1
3
где r 0 = ∑ rk ik – постоянный вектор, который является
k =1
отображением вектора r из связанного с телом базиса ΟΕ в
базис ΟΙ и определяет начальное положение
рассматриваемой точки тела в системе Ο i1i2 i3 (когда базисы
ΟΕ и ΟΙ совпадают).
Найдем скорость произвольной точки тела в системе
Ai1i2 i3 . Учитывая, что для нормированного кватерниона Λ
выполняются соотношения
~ ~ ~
Λ Λ = 1, ⇒ Λ Λ + Λ Λ = 0, (2.19)
получаем
~ ~
V = RΟ + r = VΟ + Λ r 0 Λ + Λ r 0 Λ =
(2.20)
~ ~
= VΟ + Λ Λ r − r Λ Λ ,
29
Страницы
- « первая
- ‹ предыдущая
- …
- 25
- 26
- 27
- 28
- 29
- …
- следующая ›
- последняя »
